Abstract. The focus of this study is on cross-region R&D collaborations in Europe. We use data on collaborative R&D projects funded by the 5th EU Framework Programme (FP5). The objective is to identify separation effects -such as geographical or technological effects -on the constitution of cross-region collaborative R&D activities within a Poisson spatial interaction modelling framework. The results provide striking evidence that geographical factors are important determinants of cross-region collaboration intensities, but the effect of technological proximity is stronger. R&D collaborations occur most often between organizations that are located close to each other in technological space.
JEL classification: O38, L14, R15
The focus in this article is on knowledge spillovers between high‐technology firms in Europe, as captured by patent citations. The European coverage is given by patent applications at the European Patent Office that are assigned to high‐technology firms located in the EU‐25 member states (except Cyprus and Malta), the two accession countries Bulgaria and Romania, and Norway and Switzerland. By following the paper trail left by citations between these high‐technology patents we adopt a Poisson spatial interaction modeling perspective to identify and measure spatial separation effects to interregional knowledge spillovers. In doing so we control for technological proximity between the regions, as geographical distance could be just proxying for technological proximity. The study produces prima facie evidence that geography matters. First, geographical distance has a significant impact on knowledge spillovers, and this effect is substantial. Second, national border effects are important and dominate geographical distance effects. Knowledge flows within European countries more easily than across. Not only geography, but also technological proximity matters. Interregional knowledge flows are industry specific and occur most often between regions located close to each other in technological space.
Scherngell T. and Hu Y. Collaborative knowledge production in China: regional evidence from a gravity model approach, Regional Studies. This study investigates collaborative knowledge production in China from a regional perspective. The objective is to illustrate spatial patterns of research collaborations between thirty-one Chinese regions, and to estimate the impact of geographical, technological, and economic factors on the variation of cross-region collaboration activities within a negative binomial gravity model framework. Data are used on Chinese scientific publications from 2007 with multiple author addresses coming from the China National Knowledge Infrastructure (CNKI) database. The results provide evidence that geographical space impedes cross-region research collaborations in China. Technological proximity matters more than geography, while economic effects only play a minor role. [image omitted] Scherngell T. et Hu Y. La production en collaboration de la connaissance en Chine; des preuves regionales provenant d'un modele de gravite, Regional Studies. Cette etude examine la production en collaboration de la connaissance en Chine d'un point de vue regional. On cherche a illustrer les tendances geographiques de la recherche en collaboration pour trente et une regions chinoises et a estimer l'impact des facteurs a la fois geographiques, technologiques et economiques sur la variation des activites de collaboration interregionales au sein d'un modele de gravite du type binomial negatif. On emploie des donnees sur les publications scientifiques chinoises de 2007 dont les adresses a auteur multiples proviennent de la base de donnees China National Knowledge Infrastructure (CNKI). Les resultats laissent voir que l'espace geographique fait obstacle a la recherche interregionale en collaboration en Chine. La proximite de la technologie l'emporte sur la geographie, tandis que les retombees economiques ne jouent qu'un role secondaire. Publication en collaboration Production de la connaissance en collaboration Modele de gravite regional binomial negatif Regions chinoises Scherngell T. und Hu Y. Kollaborative Wissensproduktion in China: eine empirische Analyse mit raumlichen Interaktionsmodellen, Regional Studies. Die vorliegende Studie untersucht kollaborative Wissensproduktion in China aus einer regionalen Perspektive. Zielsetzung ist es, raumliche Muster kollaborativer Wissensproduktion zwischen 31 chinesischen Regionen zu beschreiben und den Einfluss von geographischen, technologischen und okonomischen Determinanten auf die Variation interregionaler Kollaborationsaktiviaten zu messen. Die Studie verwendet neue Daten aus der China National Knowledge Infrastructure (CNKI) Datenbank uber chinesische Ko-Publikationen mit mindestens zwei Autoren aus dem Jahr 2007. Die Ergebnisse zeigen, dass die Kollaborationswahrscheinlichkeit signifikant mit zunehmender geographischer Distanz abnimmt. Der Einfluss von technologischer Nahe ist jedoch wichtiger als geographische Distanzeffekte, wahrend okonomische Unterschiede eine g...
One of the main goals of the European Research Area (ERA) concept is to improve integration of the European research system. The main policy instrument in this context is the European Framework Programme (FP) supporting pre‐competitive collaborative Research and Development (R&D). The objective of this study is to monitor progress towards ERA by identifying the evolution of separation effects influencing FP collaboration intensities between 255 European regions over the period 1999–2006. We employ spatial interaction models accounting for spatial autocorrelation by using spatial filtering methods. The results show that geographical distance and country border effects gradually decrease, and point to the contribution of the FPs to the realization of ERA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.