Over the last decade, the brain's default‐mode network (DMN) and its function has attracted a lot of attention in the field of neuroscience. However, the exact underlying mechanisms of DMN functional connectivity, or more specifically, the blood‐oxygen level‐dependent (BOLD) signal, are still incompletely understood. In the present study, we combined 2‐deoxy‐2‐[18F]fluoroglucose positron emission tomography (FDG‐PET), proton magnetic resonance spectroscopy (1H‐MRS), and resting‐state functional magnetic resonance imaging (rs‐fMRI) to investigate more directly the association between local glucose consumption, local glutamatergic neurotransmission and DMN functional connectivity during rest. The results of the correlation analyzes using the dorsal posterior cingulate cortex (dPCC) as seed region showed spatial similarities between fluctuations in FDG‐uptake and fluctuations in BOLD signal. More specifically, in both modalities the same DMN areas in the inferior parietal lobe, angular gyrus, precuneus, middle, and medial frontal gyrus were positively correlated with the dPCC. Furthermore, we could demonstrate that local glucose consumption in the medial frontal gyrus, PCC and left angular gyrus was associated with functional connectivity within the DMN. We did not, however, find a relationship between glutamatergic neurotransmission and functional connectivity. In line with very recent findings, our results lend further support for a close association between local metabolic activity and functional connectivity and provide further insights towards a better understanding of the underlying mechanism of the BOLD signal. Hum Brain Mapp 36:2027–2038, 2015. © 2015 Wiley Periodicals, Inc.
The role of mitochondria in the pathogenesis of neurodegeneration is an area of intense study. It is known that defects in proteins involved in mitochondrial quality control can cause Parkinson's disease, and there is increasing evidence linking mitochondrial dysfunction, and particularly mitochondrial DNA abnormalities, to neuronal loss in the substantia nigra. Mutations in the catalytic subunit of polymerase gamma are among the most common causes of mitochondrial disease and owing to its role in mitochondrial DNA homeostasis, polymerase gamma defects are often considered a paradigm for mitochondrial diseases generally. Yet, despite this, parkinsonism is uncommon with polymerase gamma defects. In this study, we investigated structural and functional changes in the substantia nigra of 11 patients with polymerase gamma encephalopathy. We characterized the mitochondrial DNA abnormalities and examined the respiratory chain in neurons of the substantia nigra. We also investigated nigrostriatal integrity and function using a combination of post-mortem and in vivo functional studies with dopamine transporter imaging and positron emission tomography. At the cellular level, dopaminergic nigral neurons of patients with polymerase gamma encephalopathy contained a significantly lower copy number of mitochondrial DNA (depletion) and higher levels of deletions than normal control subjects. A selective and progressive complex I deficiency was seen and this was associated with a severe and progressive loss of the dopaminergic neurons of the pars compacta. Dopamine transporter imaging and positron emission tomography showed that the degree of nigral neuronal loss and nigrostriatal depletion were severe and appeared greater even than that seen in idiopathic Parkinson's disease. Despite this, however, none of our patients showed any signs of parkinsonism. The additional presence of both thalamic and cerebellar dysfunction in our patients suggested that these may play a role in counteracting the effects of basal ganglia dysfunction and prevent the development of clinical parkinsonism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.