Despite perceived challenges to controlling an infectious disease in wildlife, oral rabies vaccination (ORV) of foxes has proved a remarkably successful tool and a prime example of a sophisticated strategy to eliminate disease from wildlife reservoirs. During the past three decades, the implementation of ORV programmes in 24 countries has led to the elimination of fox-mediated rabies from vast areas of Western and Central Europe. In this study, we evaluated the efficiency of 22 European ORV programmes between 1978 and 2010. During this period an area of almost 1.9 million km² was targeted at least once with vaccine baits, with control taking between 5 and 26 years depending upon the country. We examined factors influencing effort required both to control and eliminate fox rabies as well as cost-related issues of these programmes. The proportion of land area ever affected by rabies and an index capturing the size and overlap of successive ORV campaigns were identified as factors having statistically significant effects on the number of campaigns required to both control and eliminate rabies. Repeat comprehensive campaigns that are wholly overlapping much more rapidly eliminate infection and are less costly in the long term. Disproportionally greater effort is required in the final phase of an ORV programme, with a median of 11 additional campaigns required to eliminate disease once incidence has been reduced by 90 per cent. If successive ORV campaigns span the entire affected area, rabies will be eliminated more rapidly than if campaigns are implemented in a less comprehensive manner, therefore reducing ORV expenditure in the longer term. These findings should help improve the planning and implementation of ORV programmes, and facilitate future decision-making by veterinary authorities and policy-makers.
BackgroundAnimal trade plays an important role for the spread of infectious diseases in livestock populations. The central question of this work is how infectious diseases can potentially spread via trade in such a livestock population. We address this question by analyzing the underlying network of animal movements. In particular, we consider pig trade in Germany, where trade actors (agricultural premises) form a complex network.MethodologyThe considered pig trade dataset spans several years and is analyzed with respect to its potential to spread infectious diseases. Focusing on measurements of network-topological properties, we avoid the usage of external parameters, since these properties are independent of specific pathogens. They are on the contrary of great importance for understanding any general spreading process on this particular network. We analyze the system using different network models, which include varying amounts of information: (i) static network, (ii) network as a time series of uncorrelated snapshots, (iii) temporal network, where causality is explicitly taken into account.FindingsWe find that a static network view captures many relevant aspects of the trade system, and premises can be classified into two clearly defined risk classes. Moreover, our results allow for an efficient allocation strategy for intervention measures using centrality measures. Data on trade volume do barely alter the results and is therefore of secondary importance. Although a static network description yields useful results, the temporal resolution of data plays an outstanding role for an in-depth understanding of spreading processes. This applies in particular for an accurate calculation of the maximum outbreak size.
An accessibility graph of a network contains a link wherever there is a path of arbitrary length between two nodes. We generalize the concept of accessibility to temporal networks. Building an accessibility graph by consecutively adding paths of growing length (unfolding), we obtain information about the distribution of shortest path durations and characteristic time scales in temporal networks. Moreover, we define causal fidelity to measure the goodness of their static representation. The practicability of our proposed methods is demonstrated for three examples: networks of social contacts, livestock trade, and sexual contacts.
Between 1985 and 2008, a total of 102,387 wild boar sera originating from Eastern Germany covering an area of 108 589 km2 were tested for the presence of Aujeszky's disease virus (ADV)-specific antibodies. From 1985 until 1991 and from 1992 until 2008, wild boar sera were exclusively investigated using either conventional seroneutralization assays (n=39 621) or commercial gB and full antigen ELISAs (n=62,766), respectively. Spatial-temporal analysis revealed an increasing ADV seroprevalence from 0·4% to 15·9%, on average, during the 24-year observation period that went along with a continuous spread of the infection in a western direction. During 2006 and 2008, 18% of the 66 affected districts had ADV seroprevalences >30%. There was a significant correlation between ADV seroprevalence and the hunting index of population density (HIPD) of wild boar in the entire study area, although this did not hold true for some regions. Seroprevalences did not differ between sexes but were age-dependent. East Germany has been officially free of Aujeszky's disease (pseudorabies) in domestic pigs since 1985. Although a risk for domestic pigs cannot be completely ruled out, experience has shown that ADV in domestic pigs could be eliminated although the virus was present in the wild boar population. Despite increasing ADV seroprevalence in the East German wild boar population no spillover infections from wild boar to domestic pigs have been reported. To further trace ADV infections in the wild boar population in Germany, a nationwide serological monitoring programme should be implemented.
Rabies in European bats was first reported in Germany in 1954. In concordance with Denmark and the Netherlands, Germany has reported one of the highest numbers (n = 187) of European bat lyssavirus (EBLV)-positive cases in bats in Europe so far (1954-2005). A combined descriptive epidemiological and phylogenetic analysis on bat rabies and prevailing EBLVs is presented, comprising the past 50 years. So far, only the two lineages of EBLV-1 (genotype 5), a and b, have been detected. Although only 50% of the rabies-positive bats have been identified by species, the Serotine bat (Eptesicus serotinus) is the bat species most frequently infected. Single rabies cases have also been detected in a further five indigenous bat species. There is proven evidence for a substantial bias in the frequency of bat rabies cases in the north of Germany, with an endemic cluster in the northwesternmost low-lying plain areas adjacent to the Netherlands and Denmark. Improvements to bat rabies surveillance and research are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.