Global environmental research requires long-term climate data. Yet, meteorological infrastructure is missing in the vast majority of the world’s protected areas. Therefore, gridded products are frequently used as the only available climate data source in peripheral regions. However, associated evaluations are commonly biased towards well observed areas and consequently, station-based datasets. As evaluations on vegetation monitoring abilities are lacking for regions with poor data availability, we analyzed the potential of several state-of-the-art climate datasets (CHIRPS, CRU, ERA5-Land, GPCC-Monitoring-Product, IMERG-GPM, MERRA-2, MODIS-MOD10A1) for assessing NDVI anomalies (MODIS-MOD13Q1) in two particularly suitable remote conservation areas. We calculated anomalies of 156 climate variables and seasonal periods during 2001–2018, correlated these with vegetation anomalies while taking the multiple comparison problem into consideration, and computed their spatial performance to derive suitable parameters. Our results showed that four datasets (MERRA-2, ERA5-Land, MOD10A1, CRU) were suitable for vegetation analysis in both regions, by showing significant correlations controlled at a false discovery rate < 5% and in more than half of the analyzed areas. Cross-validated variable selection and importance assessment based on the Boruta algorithm indicated high importance of the reanalysis datasets ERA5-Land and MERRA-2 in both areas but higher differences and variability between the regions with all other products. CHIRPS, GPCC and the bias-corrected version of MERRA-2 were unsuitable and not important in both regions. We provide evidence that reanalysis datasets are most suitable for spatiotemporally consistent environmental analysis whereas gauge- or satellite-based products and their combinations are highly variable and may not be applicable in peripheral areas.
In mountain environments dimensions of climate change are unclear because of limited availability of meteorological stations. However, there is a necessity to assess the scope of local climate change, as the livelihood and food systems of subsistence-based communities are already getting impacted. To provide more clarity about local climate trends in the Pamir Mountains of Tajikistan, this study integrates measured climate data with community observations in the villages of Savnob and Roshorv. Taking a transdisciplinary approach, both knowledge systems were considered as equally pertinent and mutually informed the research process. Statistical trends of temperature and snow cover were retrieved using downscaled ERA5 temperature data and the snow cover product MOD10A1. Local knowledge was gathered through community workshops and structured interviews and analysed using a consensus index. Results showed, that local communities perceived increasing temperatures in autumn and winter and decreasing amounts of snow and rain. Instrumental data records indicated an increase in summer temperatures and a shortening of the snow season in Savnob. As both knowledge systems entail their own strengths and limitations, an integrative assessment can broaden the understanding of local climate trends by (i) reducing existing uncertainties, (ii) providing new information, and (iii) introducing unforeseen perspectives. The presented study represents a time-efficient and global applicable approach for assessing local dimensions of climate change in data-deficient regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.