The probability density function and impact of equalizationenhanced phase noise (EEPN) is analytically investigated and simulated for 100 Gb/s coherent systems using electronic dispersion compensation. EEPN impairment induces both phase noise and amplitude noise with the former twice as much as the latter. The effects of transmitter phase noise on EEPN are negligible for links with residual dispersion in excess of 700 ps/nm. Optimal linear equalizer in the presence of EEPN is derived but show only marginal performance improvement, indicating that EEPN is difficult to mitigate using simple DSP techniques. In addition, the effects of EEPN on carrier recovery techniques and corresponding cycle slip probabilities are studied.
We propose a low-cost technique for simultaneous and independent optical signal-to-noise ratio (OSNR), chromatic dispersion (CD), and polarization-mode dispersion (PMD) monitoring in 40/56-Gb/s return-to-zero differential quadrature phase-shift keying (RZ-DQPSK) and 40-Gb/s RZ-DPSK systems, using artificial neural networks (ANN) trained with empirical moments of asynchronously sampled signal amplitudes. The proposed technique employs an extremely simple hardware and digital signal processing to enable multiimpairment monitoring at different data rates and for various modulation formats without necessitating hardware changes. Simulation results demonstrate wide dynamic ranges and good monitoring accuracies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.