Ethereum is a framework for cryptocurrencies which uses blockchain technology to provide an open global computing platform, called the Ethereum Virtual Machine (EVM). EVM executes bytecode on a simple stack machine. Programmers do not usually write EVM code; instead, they can program in a JavaScript-like language, called Solidity, that compiles to bytecode. Since the main purpose of EVM is to execute smart contracts that manage and transfer digital assets (called Ether), security is of paramount importance. However, writing secure smart contracts can be extremely difficult: due to the openness of Ethereum, both programs and pseudonymous users can call into the public methods of other programs, leading to potentially dangerous compositions of trusted and untrusted code. This risk was recently illustrated by an attack on TheDAO contract that exploited subtle details of the EVM semantics to transfer roughly $50M worth of Ether into the control of an attacker. In this paper, we outline a framework to analyze and verify both the runtime safety and the functional correctness of Ethereum contracts by translation to F , a functional programming language aimed at program verification.
Abstract. This paper describes the formal verification of an irrationality proof of ζ(3), the evaluation of the Riemann zeta function, using the Coq proof assistant. This result was first proved by Apéry in 1978, and the proof we have formalized follows the path of his original presentation. The crux of this proof is to establish that some sequences satisfy a common recurrence. We formally prove this result by an a posteriori verification of calculations performed by computer algebra algorithms in a Maple session. The rest of the proof combines arithmetical ingredients and some asymptotic analysis that we conduct by extending the Mathematical Components libraries. The formalization of this proof is complete up to a weak corollary of the Prime Number Theorem.
Finding an elementary form for an antiderivative is often a difficult task, so numerical integration has become a common tool when it comes to making sense of a definite integral. Some of the numerical integration methods can even be made rigorous: not only do they compute an approximation of the integral value but they also bound its inaccuracy. Yet numerical integration is still missing from the toolbox when performing formal proofs in analysis.This paper presents an efficient method for automatically computing and proving bounds on some definite integrals inside the Coq formal system. Our approach is not based on traditional quadrature methods such as Newton-Cotes formulas. Instead, it relies on computing and evaluating antiderivatives of rigorous polynomial approximations, combined with an adaptive domain splitting. Our approach also handles improper integrals, provided that a factor of the integrand belongs to a catalog of identified integrable functions. This work has been integrated to the CoqInterval library.
Finding an elementary form for an antiderivative is often a difficult task, so numerical integration has become a common tool when it comes to making sense of a definite integral. Some of the numerical integration methods can even be made rigorous: not only do they compute an approximation of the integral value but they also bound its inaccuracy. Yet numerical integration is still missing from the toolbox when performing formal proofs in analysis.This paper presents an efficient method for automatically computing and proving bounds on some definite integrals inside the Coq formal system. Our approach is not based on traditional quadrature methods such as Newton-Cotes formulas. Instead, it relies on computing and evaluating antiderivatives of rigorous polynomial approximations, combined with an adaptive domain splitting. Our approach also handles improper integrals, provided that a factor of the integrand belongs to a catalog of identified integrable functions. This work has been integrated to the CoqInterval library.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.