BackgroundAfter the 2002/2003 SARS outbreak, 30% of survivors exhibited persisting structural pulmonary abnormalities. The long-term pulmonary sequelae of coronavirus disease 2019 (COVID-19) are yet unknown, and comprehensive clinical follow-up data are lacking.MethodsIn this prospective, multicentre, observational study, we systematically evaluated the cardiopulmonary damage in subjects recovering from COVID-19 at 60 and 100 days after confirmed diagnosis. We conducted a detailed questionnaire, clinical examination, laboratory testing, lung function analysis, echocardiography, and thoracic low-dose computed tomography (CT).ResultsData from 145 COVID-19 patients were evaluated, and 41% of all subjects exhibited persistent symptoms 100 days after COVID-19 onset, with dyspnea being most frequent (36%). Accordingly, patients still displayed an impaired lung function, with a reduced diffusing capacity in 21% of the cohort being the most prominent finding. Cardiac impairment, including a reduced left ventricular function or signs of pulmonary hypertension, was only present in a minority of subjects. CT scans unveiled persisting lung pathologies in 63% of patients, mainly consisting of bilateral ground-glass opacities and/or reticulation in the lower lung lobes, without radiological signs of pulmonary fibrosis. Sequential follow-up evaluations at 60 and 100 days after COVID-19 onset demonstrated a vast improvement of both, symptoms and CT abnormalities over time.ConclusionA relevant percentage of post-COVID-19 patients presented with persisting symptoms and lung function impairment along with pulmonary abnormalities more than 100 days after the diagnosis of COVID-19. However, our results indicate a significant improvement in symptoms and cardiopulmonary status over time.
The anemia of chronic disease (ACD) is characterized by macrophage iron retention induced by cytokines and the master regulator hepcidin. Hepcidin controls cellular iron efflux on binding to the iron export protein ferroportin. Many patients, however, present with both ACD and iron deficiency anemia (ACD/IDA), the latter resulting from chronic blood loss. We used a rat model of ACD resulting from chronic arthritis and mimicked ACD/IDA by additional phlebotomy to define differing iron-regulatory pathways. Iron retention during inflammation occurs in macrophages and the spleen, but not in the liver. In rats and humans with ACD, serum hepcidin concentrations are elevated, which is paralleled by reduced duodenal and macrophage expression of ferroportin. Individuals with ACD/IDA have significantly lower hepcidin levels than ACD subjects, and ACD/IDA persons, in contrast to ACD subjects, were able to absorb dietary iron from the gut and to mobilize iron from macrophages. Circulating hepcidin levels affect iron traffic in ACD and ACD/IDA and are more responsive to the erythropoietic demands for iron than to inflammation. Hepcidin determination may aid to differentiate between ACD and ACD/IDA and in selecting appropriate therapy for these patients. IntroductionThe anemia of chronic disease (ACD), also termed the "anemia of inflammation," is the most prevalent anemia in hospitalized patients. 1,2 ACD develops in subjects with diseases involving acute or chronic immune activation, such as patients with infections, malignancies, or autoimmune disorders. At least 3 major immunitydriven mechanisms contribute to the anemia of ACD.First, the retention of iron within the mononuclear phagocytic system leads to hypoferremia and subnormal saturation of transferrin, resulting in a limited availability of iron for erythroid progenitor cells or "functional iron deficiency." 1,3,4 Second, cytokines, such as tumor necrosis factor-␣, interferon-␥, and interleukin-1 (IL-1), exert a negative impact on the proliferation and differentiation of erythroid progenitor cells and can induce apoptosis. 5 Third, patients with ACD display an impaired response to erythropoietin (EPO). 6 The functional iron deficiency present in patients with ACD can be complicated by true iron deficiency resulting from chronic blood loss. 7 Differentiation between ACD and ACD/iron deficiency anemia (IDA) is clinically important because iron supplementation is beneficial for ACD/IDA patients but may be deleterious for ACD patients, especially if these subjects have underlying infections or malignancies. 1 In clinical practice, however, differentiating between ACD and ACD/IDA is difficult, as both diseases present with decreased serum iron concentration and transferrin saturation. In addition, ferritin levels are difficult to interpret during inflammation because ferritin expression is induced by both iron overload and inflammatory cytokines. 8 A ratio of soluble transferrin receptor (sTfR)/log ferritin may be useful in distinguishing ACD from ACD/IDA, but the ratio h...
SummaryIron holds a central position at the host-pathogen interface because mammalian and microbial cells have an essential demand for the metal, which is required for many metabolic processes. In addition, cross-regulatory interactions between iron homeostasis and immune function are evident. While iron affects the secretion of cytokines and the activity of transcription factors orchestrating immune responses, immune cell-derived mediators and acute-phase proteins control both systemic and cellular iron homeostasis. Additionally, immune-mediated strategies aim at restricting the supply of the essential nutrient iron to pathogens, which represents an effective strategy of host defence. On the other hand, microbes have evoked multiple strategies to utilize iron because a sufficient supply of this metal is linked to pathogen proliferation, virulence and persistence. The control over iron homeostasis is a central battlefield in host-pathogen interplay influencing the course of an infectious disease in favour of either the mammalian host or the pathogenic invader. This review summarizes our current knowledge on the combat of host cells and pathogens for the essential nutrient iron focusing on the immune-regulatory roles of iron on cell-mediated immunity necessary to control intracellular microbes, the host's mechanisms of iron restriction and on the counter-acting iron-acquisition strategies employed by intracellular microbes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.