Physarum polycephalum is a well-studied microbial eukaryote with unique experimental attributes relative to other experimental model organisms. It has a sophisticated life cycle with several distinct stages including amoebal, flagellated, and plasmodial cells. It is unusual in switching between open and closed mitosis according to specific life-cycle stages. Here we present the analysis of the genome of this enigmatic and important model organism and compare it with closely related species. The genome is littered with simple and complex repeats and the coding regions are frequently interrupted by introns with a mean size of 100 bases. Complemented with extensive transcriptome data, we define approximately 31,000 gene loci, providing unexpected insights into early eukaryote evolution. We describe extensive use of histidine kinase-based two-component systems and tyrosine kinase signaling, the presence of bacterial and plant type photoreceptors (phytochromes, cryptochrome, and phototropin) and of plant-type pentatricopeptide repeat proteins, as well as metabolic pathways, and a cell cycle control system typically found in more complex eukaryotes. Our analysis characterizes P. polycephalum as a prototypical eukaryote with features attributed to the last common ancestor of Amorphea, that is, the Amoebozoa and Opisthokonts. Specifically, the presence of tyrosine kinases in Acanthamoeba and Physarum as representatives of two distantly related subdivisions of Amoebozoa argues against the later emergence of tyrosine kinase signaling in the opisthokont lineage and also against the acquisition by horizontal gene transfer.
Establishment of multicellularity represents a major transition in eukaryote evolution. A subgroup of Amoebozoa, the dictyosteliids, has evolved a relatively simple aggregative multicellular stage resulting in a fruiting body supported by a stalk. Protosteloid amoeba, which are scattered throughout the amoebozoan tree, differ by producing only one or few single stalked spores. Thus, one obvious difference in the developmental cycle of protosteliids and dictyosteliids seems to be the establishment of multicellularity. To separate spore development from multicellular interactions, we compared the genome and transcriptome of a Protostelium species (Protostelium aurantium var. fungivorum) with those of social and solitary members of the Amoebozoa. During fruiting body formation nearly 4,000 genes, corresponding to specific pathways required for differentiation processes, are upregulated. A comparison with genes involved in the development of dictyosteliids revealed conservation of >500 genes, but most of them are also present in Acanthamoeba castellanii for which fruiting bodies have not been documented. Moreover, expression regulation of those genes differs between P. aurantium and Dictyostelium discoideum. Within Amoebozoa differentiation to fruiting bodies is common, but our current genome analysis suggests that protosteliids and dictyosteliids used different routes to achieve this. Most remarkable is both the large repertoire and diversity between species in genes that mediate environmental sensing and signal processing. This likely reflects an immense adaptability of the single cell stage to varying environmental conditions. We surmise that this signaling repertoire provided sufficient building blocks to accommodate the relatively simple demands for cell–cell communication in the early multicellular forms.
BackgroundIn gene-dense genomes, mobile elements are confronted with highly selective pressure to amplify without causing excessive damage to the host. The targeting of tRNA genes as potentially safe integration sites has been developed by retrotransposons in various organisms such as the social amoeba Dictyostelium discoideum and the yeast Saccharomyces cerevisiae. In D. discoideum, tRNA gene-targeting retrotransposons have expanded to approximately 3 % of the genome. Recently obtained genome sequences of species representing the evolutionary history of social amoebae enabled us to determine whether the targeting of tRNA genes is a generally successful strategy for mobile elements to colonize compact genomes.ResultsDuring the evolution of dictyostelids, different retrotransposon types independently developed the targeting of tRNA genes at least six times. DGLT-A elements are long terminal repeat (LTR) retrotransposons that display integration preferences ~15 bp upstream of tRNA gene-coding regions reminiscent of the yeast Ty3 element. Skipper elements are chromoviruses that have developed two subgroups: one has canonical chromo domains that may favor integration in centromeric regions, whereas the other has diverged chromo domains and is found ~100 bp downstream of tRNA genes. The integration of D. discoideum non-LTR retrotransposons ~50 bp upstream (TRE5 elements) and ~100 bp downstream (TRE3 elements) of tRNA genes, respectively, likely emerged at the root of dictyostelid evolution. We identified two novel non-LTR retrotransposons unrelated to TREs: one with a TRE5-like integration behavior and the other with preference ~4 bp upstream of tRNA genes.ConclusionsDictyostelid retrotransposons demonstrate convergent evolution of tRNA gene targeting as a probable means to colonize the compact genomes of their hosts without being excessively mutagenic. However, high copy numbers of tRNA gene-associated retrotransposons, such as those observed in D. discoideum, are an exception, suggesting that the targeting of tRNA genes does not necessarily favor the amplification of position-specific integrating elements to high copy numbers under the repressive conditions that prevail in most host cells.Electronic supplementary materialThe online version of this article (doi:10.1186/s13100-016-0073-9) contains supplementary material, which is available to authorized users.
Retrotransposons contribute significantly to the evolution of eukaryotic genomes. They replicate by producing DNA copies of their own RNA, which are integrated at new locations in the host cell genome. In the gene-dense genome of the social amoeba Dictyostelium discoideum, retrotransposon TRE5-A avoids insertional mutagenesis by targeting the transcription factor (TF) IIIC/IIIB complex and integrating ∼50 bp upstream of tRNA genes. We generated synthetic TRE5-A retrotransposons (TRE5-Absr) that were tagged with a selection marker that conferred resistance to blasticidin after a complete retrotransposition cycle. We found that the TRE5-Absr elements were efficiently mobilized in trans by proteins expressed from the endogenous TRE5-A population found in D. discoideum cells. ORF1 protein translated from TRE5-Absr elements significantly enhanced retrotransposition. We observed that the 5′ untranslated region of TRE5-A could be replaced by an unrelated promoter, whereas the 3′ untranslated region of TRE5-A was essential for retrotransposition. A predicted secondary structure in the RNA of the 3′ untranslated region of TRE5-A may be involved in the retrotransposition process. The TRE5-Absr elements were capable of identifying authentic integration targets in vivo, including formerly unnoticed, putative binding sites for TFIIIC on the extrachromosomal DNA element that carries the ribosomal RNA genes.
e C-module-binding factor A (CbfA) is a jumonji-type transcription regulator that is important for maintaining the expression and mobility of the retrotransposable element TRE5-A in the social amoeba Dictyostelium discoideum. CbfA-deficient cells have lost TRE5-A retrotransposition, are impaired in the ability to feed on bacteria, and do not enter multicellular development because of a block in cell aggregation. In this study, we performed Illumina RNA-seq of growing CbfA mutant cells to obtain a list of CbfA-regulated genes. We demonstrate that the carboxy-terminal domain of CbfA alone is sufficient to mediate most CbfAdependent gene expression. The carboxy-terminal domain of CbfA from the distantly related social amoeba Polysphondylium pallidum restored the expression of CbfA-dependent genes in the D. discoideum CbfA mutant, indicating a deep conservation in the gene regulatory function of this domain in the dictyostelid clade. The CbfA-like protein CbfB displays ϳ25% sequence identity with CbfA in the amino-terminal region, which contains a JmjC domain and two zinc finger regions and is thought to mediate chromatin-remodeling activity. In contrast to CbfA proteins, where the carboxy-terminal domains are strictly conserved in all dictyostelids, CbfB proteins have completely unrelated carboxy-terminal domains. Outside the dictyostelid clade, CbfA-like proteins with the CbfA-archetypical JmjC/zinc finger arrangement and individual carboxy-terminal domains are prominent in filamentous fungi but are not found in yeasts, plants, and metazoans. Our data suggest that two functional regions of the CbfAlike proteins evolved at different rates to allow the occurrence of species-specific adaptation processes during genome evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.