The presented article discusses recent advances in biomedical applications of classical Magnetohydrodynamics (MHD), with a focus on operating principles and associated material considerations. These applications address novel approaches to common biomedical problems from micro-particle sorting for lab-on-a-chip devices to advanced physiological monitoring techniques. 100 papers in the field of MHDs were reviewed with a focus on studies with direct biomedical applications. The body of literature was categorized into three primary areas of research including Material Considerations for MHD Applications, MHD Actuation Devices, and MHD Sensing Techniques. The state of the art in the field was examined and research topics were connected to provide a wide view of the field of biomedical MHDs. As this field develops, the need for advanced simulation and material design will continue to increase in importance in order to further expand its reach to maturity. As the field of biomedical MHDs continues to grow, advances towards micro-scale transitions will continue to be made, maintaining its clinically driven nature and moving towards real-world applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.