The Namib grass Stipagrostis sabulicola relies, to a large degree, upon fog for its water supply and is able to guide collected water towards the plant base. This directed irrigation of the plant base allows an efficient and rapid uptake of the fog water by the shallow roots. In this contribution, the mechanisms for this directed water flow are analysed. Stipagrostis sabulicola has a highly irregular surface. Advancing contact angle is 988 + 58 and the receding angle is 568 + 98, with a mean of both values of approximately 778. The surface is thus not hydrophobic, shows a substantial contact angle hysteresis and therefore, allows the development of pinned drops of a substantial size. The key factor for the water conduction is the presence of grooves within the leaf surface that run parallel to the long axis of the plant. These grooves provide a guided downslide of drops that have exceeded the maximum size for attachment. It also leads to a minimum of inefficient drop scattering around the plant. The combination of these surface traits together with the tall and upright stature of S. sabulicola contributes to a highly efficient natural fog-collecting system that enables this species to thrive in a hyperarid environment.
The significance of inspiration from nature for technical textiles and for fibrous composite materials is demonstrated by examples of already existing technical solutions that either parallel biology or are indeed inspired by biological models. The two different basic types of biomimetic approaches are briefly presented and discussed for the "technical plant stem." The technical plant stem is a biomimetic product inspired by a variety of structural and functional properties found in different plants. The most important botanical templates are the stems of the giant reed (Arundo donax, Poaceae) and of the Dutch rush (Equisetum hyemale, Equisetaceae). After analysis of the structural and mechanical properties of these plants, the physical principles have been deduced and abstracted and finally transferred to technical applications. Modern computer-controlled fabrication methods for producing technical textiles and for structuring the embedding matrix of compound materials render unique possibilities for transferring the complex structures found in plants, which often are optimized on several hierarchical levels, into technical applications. This process is detailed for the technical plant stem, a biomimetic, lightweight, fibrous composite material based on technical textiles with optimized mechanical properties and a gradient structure.
We designed a type of smart bioinspired wettable surface with tip-shaped patterns by combining polydimethylsiloxane (PDMS) and graphene (PDMS/G). The laser etched porous graphene surface can produce an obvious wettability change between 200 °C and 0 °C due to a change in aperture size and chemical components. We demonstrate that the cooperation of the geometrical structure and the controllable wettability play an important role in water gathering, and surfaces with tip-shaped wettability patterns can quickly drive tiny water droplets toward more wettable regions, so making a great contribution to the improvement of water collection efficiency. In addition, due to the effective cooperation between super hydrophobic and hydrophilic regions of the special tip-shaped pattern, unidirectional water transport on the 200 °C heated PDMS/G surface can be realized. This study offers a novel insight into the design of temperature-tunable materials with interphase wettability that may enhance fog collection efficiency in engineering liquid harvesting equipment, and realize unidirectional liquid transport, which could potentially be applied to the realms of microfluidics, medical devices and condenser design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.