Unstructured metadata fields such as 'description' offer tremendous value for users to understand cultural heritage objects. However, this type of narrative information is of little direct use within a machine-readable context due to its unstructured nature. This paper explores the possibilities and limitations of Named-Entity Recognition (NER) and Term Extraction (TE) to mine such unstructured metadata for meaningful concepts. These concepts can be used to leverage otherwise limited searching and browsing operations, but they can also play an important role to foster Digital Humanities research. In order to catalyze experimentation with NER and TE, the paper proposes an evaluation of the performance of three third-party entity extraction services through a comprehensive case study, based on the descriptive fields of the Smithsonian Cooper-Hewitt National Design Museum in New York. In order to cover both NER and TE, we first offer a quantitative analysis of named-entities retrieved by the services in terms of precision and recall compared to a manually annotated gold-standard corpus, then complement this approach with a more qualitative assessment of relevant terms extracted. Based on the outcomes of this double analysis, the conclusions present the added value of entity extraction services, but also indicate the dangers of uncritically using NER and/or TE, and by extension Linked Data principles, within the Digital Humanities. All metadata and tools used within the paper are freely available, making it possible for researchers and practitioners to repeat the methodology. By doing so, the paper offers a significant contribution towards understanding the value of entity recognition and disambiguation for the Digital Humanities.
Machine clients are increasingly making use of the Web to perform tasks. While Web services traditionally mimic remote procedure calling interfaces, a new generation of socalled hypermedia APIs works through hyperlinks and forms, in a way similar to how people browse the Web. This means that existing composition techniques, which determine a procedural plan upfront, are not sufficient to consume hypermedia APIs, which need to be navigated at runtime. Clients instead need a more dynamic plan that allows them to follow hyperlinks and use forms with a preset goal. Therefore, in this article, we show how compositions of hypermedia APIs can be created by generic Semantic Web reasoners. This is achieved through the generation of a proof based on semantic descriptions of the APIs' functionality. To pragmatically verify the applicability of compositions, we introduce the notion of pre-execution and post-execution proofs. The runtime interaction between a client and a server is guided by proofs but driven by hypermedia, allowing the client to react to the application's actual state indicated by the server's response. We describe how to generate compositions from descriptions, discuss a computer-assisted process to generate descriptions, and verify reasoner performance on various composition tasks using a benchmark suite. The experimental results lead to the conclusion that proof-based consumption of hypermedia APIs is a feasible strategy at Web scale.Under consideration in Theory and Practice of Logic Programming (TPLP).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.