We demonstrate the growth and single-mode lasing operation of GaAs-AlGaAs core-multishell nanowires (NW) with radial single and multiple GaAs quantum wells (QWs) as active gain media. When subject to optical pumping lasing emission with distinct s-shaped input-output characteristics, linewidth narrowing and emission energies associated with the confined QWs are observed. Comparing the low temperature performance of QW NW laser structures having 7 coaxial QWs with a nominally identical structure having only a single QW shows that the threshold power density reduces several-fold, down to values as low as ∼2.4 kW/cm2 for the multiple QW NW laser. This confirms that the individual radial QWs are electronically weakly coupled and that epitaxial design can be used to optimize the gain characteristics of the devices. Temperature-dependent investigations show that lasing prevails up to 300 K, opening promising new avenues for efficient III–V semiconductor NW lasers with embedded low-dimensional gain media.
Semiconductor nanowire (NW) lasers are attractive as integrated on-chip coherent light sources with strong potential for applications in optical communication and sensing. Realizing lasers from individual bulk-type NWs with emission tunable from the near-infrared to the telecommunications spectral region is, however, challenging and requires low-dimensional active gain regions with an adjustable band gap and quantum confinement. Here, we demonstrate lasing from GaAs-(InGaAs/AlGaAs) core-shell NWs with multiple InGaAs quantum wells (QW) and lasing wavelengths tunable from ∼0.8 to ∼1.1 μm. Our investigation emphasizes particularly the critical interplay between QW design, growth kinetics, and the control of InGaAs composition in the active region needed for effective tuning of the lasing wavelength. A low shell growth temperature and GaAs interlayers at the QW/barrier interfaces enable In molar fractions up to ∼25% without plastic strain relaxation or alloy intermixing in the QWs. Correlated scanning transmission electron microscopy, atom probe tomography, and confocal PL spectroscopy analyses illustrate the high sensitivity of the optically pumped lasing characteristics on microscopic properties, providing useful guidelines for other III-V-based NW laser systems.
Core–shell nanowires (NW) have become very prominent systems for band engineered NW heterostructures that effectively suppress detrimental surface states and improve performance of related devices. This concept is particularly attractive for material systems with high intrinsic surface state densities, such as the low-bandgap In-containing group-III arsenides, however selection of inappropriate, lattice-mismatched shell materials have frequently caused undesired strain accumulation, defect formation, and modifications of the electronic band structure. Here, we demonstrate the realization of closely lattice-matched radial InGaAs–InAlAs core–shell NWs tunable over large compositional ranges [x(Ga)∼y(Al) = 0.2–0.65] via completely catalyst-free selective-area molecular beam epitaxy. On the basis of high-resolution X-ray reciprocal space maps the strain in the NW core is found to be insignificant (ε < 0.1%), which is further reflected by the absence of strain-induced spectral shifts in luminescence spectra and nearly unmodified band structure. Remarkably, the lattice-matched InAlAs shell strongly enhances the optical efficiency by up to 2 orders of magnitude, where the efficiency enhancement scales directly with increasing band offset as both Ga- and Al-contents increase. Ultimately, we fabricated vertical InGaAs−InAlAs NW/Si photovoltaic cells and show that the enhanced internal quantum efficiency is directly translated to an energy conversion efficiency that is ∼3–4 times larger as compared to an unpassivated cell. These results highlight the promising performance of lattice-matched III–V core–shell NW heterostructures with significant impact on future development of related nanophotonic and electronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.