Middleware platforms are key technology in any Internet of Things (IoT) system, considering their role in managing the intermediary communications between devices and applications. In the energy sector, it has been shown that IoT devices enable the integration of all network assets to one large distributed system. This comes with significant benefits, such as improving energy efficiency, boosting the generation of renewable energy, reducing maintenance costs and increasing comfort. Various existing IoT middlware solutions encounter several problems that limit their performance, such as vendor locks. Hence, this paper presents a literature review and an expert survey on IoT middleware platforms in energy systems, in order to provide a set of tools and functionalities to be supported by any future efficient, flexible and interoperable IoT middleware considering the market needs. The analysis of the results shows that experts currently use the IoT middleware mainly to deploy services such as visualization, monitoring and benchmarking of energy consumption, and energy optimization is considered as a future application to target. Likewise, non-functional requirements, such as security and privacy, play vital roles in the IoT platforms’ performances.
Building automation and control systems (BAS) have become a common part of non-residential buildings in the past decades. However, many automation systems rely on severely outdated technology that render it challenging, if not impossible, to implement recently developed, advanced building control approaches. By contrast, recent developments in cloud computing and wireless technology could support solutions to these challenges. However, many stakeholders require a suitable methodology to determine the potentials and the requirements of future, possibly next generation BAS. In this paper, we thus present and apply a method to answer the open questions and define minimum requirements. For that end, we investigate available communication technologies, protocols, and interfaces. Moreover, we present a simple test bench layout that could serve as a blueprint for future, more comprehensive test benches. It is a model a ventilation circuit consisting of a CO2 sensor for the supply air and an electronic damper. We turned these conventional components with analogue interfaces into IoT devices using a previously developed WiFi gateway. An exemplary test is the control of the CO2 concentration using a feedback controller implemented on an external machine. We aim to extend our initial prototype to a real-life building demonstration for dynamically scalable automation systems using wireless communication and develop our set-up into a platform enabling arbitrarily complex automation strategies and artificial intelligence applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.