In a dynamic world, mechanisms allowing prediction of future situations can provide a selective advantage. We suggest that memory systems differ in the degree of flexibility they offer for anticipatory behavior and put forward a corresponding taxonomy of prospection. The adaptive advantage of any memory system can only lie in what it contributes for future survival. The most flexible is episodic memory, which we suggest is part of a more general faculty of mental time travel that allows us not only to go back in time, but also to foresee, plan, and shape virtually any specific future event. We review comparative studies and find that, in spite of increased research in the area, there is as yet no convincing evidence for mental time travel in nonhuman animals. We submit that mental time travel is not an encapsulated cognitive system, but instead comprises several subsidiary mechanisms. A theater metaphor serves as an analogy for the kind of mechanisms required for effective mental time travel. We propose that future research should consider these mechanisms in addition to direct evidence of future-directed action. We maintain that the emergence of mental time travel in evolution was a crucial step towards our current success.
Various deficits in the cognitive functioning of people with autism have been documented in recent years but these provide only partial explanations for the condition.We focus instead on an imitative disturbance involving difficulties both in copying actions and in inhibiting more stereotyped mimicking, such as echolalia. A candidate for the neural basis of this disturbance may be found in a recently discovered class of neurons in frontal cortex, 'mirror neurons' (MNs). These neurons show activity in relation both to specific actions performed by self and matching actions performed by others,
Human children copy others' actions with high fidelity, supporting early cultural learning and assisting in the development and maintenance of behavioral traditions [1]. Imitation has long been assumed to occur from birth [2-4], with influential theories (e.g., [5-7]) placing an innate imitation module at the foundation of social cognition (potentially underpinned by a mirror neuron system [8, 9]). Yet, the very phenomenon of neonatal imitation has remained controversial. Empirical support is mixed and interpretations are varied [10-16], potentially because previous investigations have relied heavily on cross-sectional designs with relatively small samples and with limited controls [17, 18]. Here, we report surprising results from the most comprehensive longitudinal study of neonatal imitation to date. We presented infants (n = 106) with nine social and two non-social models and scored their responses at 1, 3, 6, and 9 weeks of age. Longitudinal analyses indicated that the infants did not imitate any of the models, as they were just as likely to produce the gestures in response to control models as they were to matching models. Previous positive findings were replicated in limited cross-sections of the data, but the overall analyses confirmed these findings to be mere artifacts of restricted comparison conditions. Our results undermine the idea of an innate imitation module and suggest that earlier studies reporting neonatal imitation were methodologically limited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.