For Wi-Fi positioning usually location fingerprinting or (tri)lateration are employed whereby the received signal strengths (RSSs) of the surrounding Wi-Fi Access Points (APs) are scanned on the mobile devices and used to perform localization. Within the scope of this study, the position of a mobile user is determined on the basis of lateration. Two new differential approaches are developed and compared to two common models, i.e., the one-slope and multi-wall model, for the conversion of the measured RSS of the Wi-Fi signals into ranges. The two novel methods are termed DWi-Fi as they are derived either from the well-known DGPS or VLBI positioning principles. They make use of a network of reference stations deployed in the area of interest. From continuous RSS observations on these reference stations correction parameters are derived and applied by the user in real-time. This approach leads to a reduced influence of temporal and spatial variations and various propagation effects on the positioning result. In practical use cases conducted in a multi-storey office building with three different smartphones, it is proven that the two DWi-Fi approaches outperform the common models as static positioning yielded to position errors of about 5 m in average under good spatial conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.