The analysis of multimodal data collected by innovative imaging sensors, Internet of Things devices, and user interactions can provide smart and automatic distant monitoring of Parkinson's and Alzheimer's patients and reveal valuable insights for early detection and/or prevention of events related to their health. This article describes a novel system that involves data capturing and multimodal fusion to extract relevant features, analyze data, and provide useful recommendations. The system gathers signals from diverse sources in health monitoring environments, understands the user behavior and context, and triggers proper actions for improving the patient's quality of life. The system offers a multimodal, multi-patient, versatile approach not present in current developments. It also offers comparable or improved results for detection of abnormal behavior in daily motion. The system was implemented and tested during 10 weeks in real environments involving 18 patients.
In this work, a method for human fall detection is presented based on Recurrent Neural Networks. The ability of these networks to process and encode sequential data, such as acceleration measurements from body-worn sensors, makes them ideal candidates for this task. Furthermore, since such networks can benefit greatly from additional data during training, the use of a data augmentation procedure involving random 3D rotations has been investigated. When evaluated on the publicly available URFD dataset, the proposed method achieved better results compared to other methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.