Many modern vehicles collect inter-vehicle distance data from radar sensors as input to driver assistance systems. However, vehicle manufacturers often use proprietary algorithms to conceal the collected data, making them inaccessible to external individuals, such as researchers. Aftermarket sensors may circumvent this issue. This study investigated the use of low-cost radar sensors to determine inter-vehicle distances during real-world semi-automated truck platooning on two-way, two-lane rural roads. Radar data from the two follower trucks in a three-truck platoon were collected, synchronized and filtered. The sensors measured distance, relative velocity and signal-to-noise ratio. Dashboard camera footage was collected, coded and synchronized to the radar data, providing context about the driving situation, such as oncoming trucks, roundabouts and tunnels. The sensors had different configuration parameters, suggested by the supplier, to avoid signal interference. With parameters as chosen, sensor ranges, inferred from maximum distance measurements, were approximately 74 and 71 m. These values were almost on par with theoretical calculations. The sensors captured the preceding truck for 83–85% of the time where they had the preceding truck within range, and 95–96% of the time in tunnels. While roundabouts are problematic, the sensors are feasible for collecting inter-vehicle distance data during truck platooning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.