Software-product-line engineering has gained considerable momentum in the recent years, both in industry and in academia. A software product line is a family of software products that share a common set of features. Software product lines challenge traditional analysis techniques, such as type checking, model checking, and theorem proving, in their quest of ensuring correctness and reliability of software. Simply creating and analyzing all products of a product line is usually not feasible, due to the potentially exponential number of valid feature combinations. Recently, researchers began to develop analysis techniques that take the distinguishing properties of software product lines into account, for example, by checking feature-related code in isolation or by exploiting variability information during analysis. The emerging field of product-line analyses is both broad and diverse, so it is difficult for researchers and practitioners to understand their similarities and differences. We propose a classification of product-line analyses to enable systematic research and application. Based on our insights with classifying and comparing a corpus of 123 research articles, we develop a research agenda to guide future research on product-line analyses.
Features express the variabilities and commonalities among programs in a software product line (SPL). A feature model defines the valid combinations of features, where each combination corresponds to a program in an SPL. SPLs and their feature models evolve over time. We classify the evolution of a feature model via modifications as refactorings, specializations, generalizations, or arbitrary edits. We present an algorithm to reason about feature model edits to help designers determine how the program membership of an SPL has changed. Our algorithm takes two feature models as input (before and after edit versions), where the set of features in both models are not necessarily the same, and it automatically computes the change classification. Our algorithm is able to give examples of added or deleted products and efficiently classifies edits to even large models that have thousands of features.
FeatureIDE is an open-source framework for feature-oriented software development (FOSD) based on Eclipse. FOSD is a paradigm for construction, customization, and synthesis of software systems. Code artifacts are mapped to features and a customized software system can be generated given a selection of features. The set of software systems that can be generated is called a software product line (SPL). FeatureIDE supports several FOSD implementation techniques such as feature-oriented programming, aspect-oriented programming, delta-oriented programming, and preprocessors. All phases of FOSD are supported in FeatureIDE, namely domain analysis, requirements analysis, domain implementation, and software generation.
Software-product-line engineering is an efficient means to generate a family of program variants for a domain from a single code base. However, because of the potentially high number of possible program variants, it is difficult to test them all and ensure properties like type safety for the entire product line. We present a product-line-aware type system that can type check an entire software product line without generating each variant in isolation. Specifically, we extend the Featherweight Java calculus with feature annotations for product-line development and prove formally that all program variants generated from a well-typed product line are well-typed. Furthermore, we present a solution to the problem of typing mutually exclusive features. We discuss how results from our formalization helped implementing our own product-line tool CIDE for full Java and report of experience with detecting type errors in four existing software-product-line implementations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.