Antibody drug conjugates (ADCs) are a therapeutic class offering promise for cancer therapy. The attachment of cytotoxic drugs to antibodies can result in an effective therapy with better safety potential than nontargeted cytotoxics. To understand the role of conjugation site, we developed an enzymatic method for site-specific antibody drug conjugation using microbial transglutaminase. This allowed us to attach diverse compounds at multiple positions and investigate how the site influences stability, toxicity, and efficacy. We show that the conjugation site has significant impact on ADC stability and pharmacokinetics in a species-dependent manner. These differences can be directly attributed to the position of the linkage rather than the chemical instability, as was observed with a maleimide linkage. With this method, it is possible to produce homogeneous ADCs and tune their properties to maximize the therapeutic window.
The degree of stability of antibody-drug linkers in systemic circulation, and the rate of their intracellular processing within target cancer cells are among the key factors determining the efficacy of antibody-drug conjugates (ADC) in vivo. Previous studies demonstrated the susceptibility of cleavable linkers, as well as auristatin-based payloads, to enzymatic cleavage in rodent plasma. Here, we identify Carboxylesterase 1C as the enzyme responsible for the extracellular hydrolysis of valine-citrulline-paminocarbamate (VC-PABC)-based linkers in mouse plasma. We further show that the activity of Carboxylesterase 1C towards VC-PABC-based linkers, and consequently the stability of ADCs in mouse plasma, can be effectively modulated by small chemical modifications to the linker. While the introduced modifications can protect the VC-PABC-based linkers from extracellular cleavage, they do not significantly alter the intracellular linker processing by the lysosomal protease Cathepsin B. The distinct substrate preference of the serum Carboxylesterase 1C offers the opportunity to modulate the extracellular stability of cleavable ADCs without diminishing the intracellular payload release required for ADC efficacy. Mol Cancer Ther; 15(5); 958-70. Ó2016 AACR.
The systemic stability of the antibody−drug linker is crucial for delivery of an intact antibody−drug conjugate (ADC) to target-expressing tumors. Linkers stable in circulation but readily processed in the target cell are necessary for both safety and potency of the delivered conjugate. Here, we report a range of stabilities for an auristatin-based payload site-specifically attached through a cleavable valine-citrulline-p-aminobenzylcarbamate (VC-PABC) linker across various sites on an antibody. We demonstrate that the conjugation site plays an important role in determining VC-PABC linker stability in mouse plasma, and that the stability of the linker positively correlates with ADC cytotoxic potency both in vitro and in vivo. Furthermore, we show that the VC-PABC cleavage in mouse plasma is not mediated by Cathepsin B, the protease thought to be primarily responsible for linker processing in the lysosomal degradation pathway. Although the VC-PABC cleavage is not detected in primate plasma in vitro, linker stabilization in the mouse is an essential prerequisite for designing successful efficacy and safety studies in rodents during preclinical stages of ADC programs. The divergence of linker metabolism in mouse plasma and its intracellular cleavage offers an opportunity for linker optimization in the circulation without compromising its efficient payload release in the target cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.