Abstract. The VAMOS 1 Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) was an international field program designed to make observations of poorly understood but critical components of the coupled climate system of the southeast Pacific. This region is characterized by strong coastal upwelling, the coolest SSTs in the tropi- cal belt, and is home to the largest subtropical stratocumulus deck on Earth. The field intensive phase of VOCALSREx took place during October and November 2008 and constitutes a critical part of a broader CLIVAR program (VOCALS) designed to develop and promote scientific activities leading to improved understanding, model simulations, and predictions of the southeastern Pacific (SEP) coupled ocean-atmosphere-land system, on diurnal to interannual timescales. The other major components of VOCALS are a modeling program with a model hierarchy ranging from the local to global scales, and a suite of extended observations from regular research cruises, instrumented moorings, Published by Copernicus Publications on behalf of the European Geosciences Union. R. Wood et al.: VOCALS operationsand satellites. The two central themes of VOCALS-REx focus upon (a) links between aerosols, clouds and precipitation and their impacts on marine stratocumulus radiative properties, and (b) physical and chemical couplings between the upper ocean and the lower atmosphere, including the role that mesoscale ocean eddies play. A set of hypotheses designed to be tested with the combined field, monitoring and modeling work in VOCALS is presented here. A further goal of VOCALS-REx is to provide datasets for the evaluation and improvement of large-scale numerical models. VOCALSREx involved five research aircraft, two ships and two surface sites in northern Chile. We describe the instrument payloads and key mission strategies for these platforms and give a summary of the missions conducted.
Abstract. The VAMOS Ocean-Cloud-Atmosphere-Land Regional Experiment (VOCALS-REx) was conducted from 15 October to 15 November 2008 in the South East Pacific (SEP) region to investigate interactions between land, sea and atmosphere in this unique tropical eastern ocean environment and to improve the skill of global and regional models in representing the region. This study synthesises selected aircraft, ship and surface site observations from VOCALSREx to statistically summarise and characterise the atmospheric composition and variability of the Marine Boundary Layer (MBL) and Free Troposphere (FT) along the 20 • S parallel between 70 • W and 85 • W. Significant zonal gradients in mean MBL sub-micron aerosol particle size and composition, carbon monoxide, sulphur dioxide and ozone were seen over the campaign, with a generally more variable and polluted coastal environment and a less variable, more pristine remote maritime regime. Gradients in aerosol and trace gas concentrations were observed to be associated with strong gradients in cloud droplet number. The FT wasCorrespondence to: G. Allen (grant.allen@manchester.ac.uk) often more polluted in terms of trace gases than the MBL in the mean; however increased variability in the FT composition suggests an episodic nature to elevated concentrations. This is consistent with a complex vertical interleaving of airmasses with diverse sources and hence pollutant concentrations as seen by generalised back trajectory analysis, which suggests contributions from both local and longrange sources. Furthermore, back trajectory analysis demonstrates that the observed zonal gradients both in the boundary layer and the free troposphere are characteristic of marked changes in airmass history with distance offshore -coastal boundary layer airmasses having been in recent contact with the local land surface and remote maritime airmasses having resided over ocean for in excess of ten days. Boundary layer composition to the east of 75 • W was observed to be dominated by coastal emissions from sources to the west of the Andes, with evidence for diurnal pumping of the Andean boundary layer above the height of the marine capping inversion. Analysis of intra-campaign variability in atmospheric composition was not found to be significantly correlated with observed low-frequency variability in the large scale flow pattern; campaign-average interquartile ranges of Published by Copernicus Publications on behalf of the European Geosciences Union. 5238 G. Allen et al.: South East Pacific composition during VOCALS-REx CO, SO 2 and O 3 concentrations at all longitudes were observed to dominate over much smaller differences in median concentrations calculated between periods of different flow regimes. The campaign climatology presented here aims to provide a valuable dataset to inform model simulation and future process studies, particularly in the context of aerosolcloud interaction and further evaluation of dynamical processes in the SEP region for conditions analogous to those during VOCALS-REx....
[1] Although the influence of the El Niño -Southern Oscillation on the extra-tropical climate is well established for the Pacific basin and North American regions, there is no clear consensus as to whether there are reproducible effects from ENSO on the North Atlantic and West European regions. In this study we present a revised analysis of past El-Niño teleconnections. By stratifying ElNiño events according to amplitude, we find a highly nonlinear yet robust response to ENSO that changes sign over the eastern North Atlantic as the amplitude of the El-Niño anomaly increases. Results from a series of experiments with a general circulation model indicate that the response to strong ENSO events is reproducible given the sea-surface temperature anomalies in the tropical Pacific. The response to moderate El-Niño events resembles the negative phase of the North Atlantic Oscillation as found in previous studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.