We present a comprehensive experimental study of isothermal Fickian diffusion in the ternary and binary liquid mixtures of water, ethanol, and triethylene glycol over the entire ternary composition space. 21 ternary mixtures inside the composition triangle have been investigated by means of the Taylor dispersion technique and 30 binary mixtures by Taylor dispersion and/or optical beam deflection in a Soret cell. The scalar binary diffusion coefficient has been determined along all three binary boundaries of the composition space and compared with estimations based on the Stokes-Einstein relation using stick or slip boundary conditions. The four elements of the ternary diffusion matrix and the diffusion eigenvalues were determined over a large portion of the composition triangle. The pseudo-binary diffusion coefficients obtained in Taylor dispersion experiments with either one of the two independent concentrations kept constant are comparable to the two diffusion eigenvalues. One of the two off-diagonal elements of the diffusion matrix is of the same order as the diagonal ones and, hence, not negligible, whereas the other one is approximately one order of magnitude smaller. Where available, our results compare well with literature data. The investigated compositions also comprise the five compositions that are scheduled for microgravity experiments in the ESA DCMIX3 project.
We report on the measurements of diffusion (D), thermodiffusion (D T ) and Soret (S T ) coefficients in binary pairs of the ternary system toluene-methanol-cyclohexane using different instrumental techniques: microgravity measurements (SODI/DCMIX2) on the International Space Station (ISS), thermogravitational column (TGC) in combination with sliding symmetric tubes (SST), optical beam deflection (OBD), optical digital interferometry (ODI) and Counter Flow Cell (CFC). The binary systems have large regions where the mixtures are either not miscible or the Soret coefficient is negative. All the coefficients have been measured over a wide composition range with the exception of a miscibility gap. Results from different instruments and literature data are in favorable agreement over a broad composition range. Additionally, we have carefully measured the physical properties and the optical contrast factors (∂n/∂c) p,T and (∂n/∂T ) p,c . The latter ones were also calculated using the Looyenga equation. The measurements in methanol-cyclohexane mixture revealed a decay of the diffusion coefficient when approaching the miscibility gap. We have interpreted this in the spirit of the pseudospinodal concept.
Q1We report on thermodiffusion experiments conducted on the International Space Station ISS during fall 2016. These experiments are part of the DCMIX (Diffusion and thermodiffusion Coefficients Measurements in ternary Mixtures) project, which aims at establishing a reliable data base of non-isothermal transport coefficients for selected ternary liquid mixtures. The third campaign, DCMIX3, focuses on aqueous systems with water/ethanol/triethylene glycol as an example, where sign changes of the Soret coefficient have already been reported for certain binary subsystems. Investigations have been carried out with the SODI (Selectable Optical Diagnostics Instrument) instrument, a Mach-Zehnder interferometer set up inside the Microgravity Science Glovebox in the Destiny Module of the ISS. Concentration changes within the liquids have been monitored in response to an external temperature gradient using phase-stepping interferometry. The complete data set has been made available in spring 2017. Due to additionally available measurement time, it was possible to collect a complete data set at 30 • C and an almost complete data set at 25 • C, which significantly exceeds the originally envisaged measurements at a single temperature only. All samples could be measured successfully. The SODI instrument and the DCMIX experiments have proven reliable and robust, allowing to extract meaningful data even in case of unforeseen laser instabilities. First assessments of the data quality have revealed six out of 31 runs with some problems in image contrast and/or phase step stability that will require more sophisticated algorithms. This publication documents all relevant parameters of the conducted experiments and also events that might have an influence on the final results. The compiled information is intended to serve as a starting point for all following data evaluations. Q2
This paper describes the European Space Agency (ESA) experiments devoted to study thermodiffusion of fluid mixtures in microgravity environment, where sedimentation and convection do not affect the mass flow induced by the Soret effect. First, the experiments performed on binary mixtures in the IVIDIL and GRADFLEX experiments are described. Then, further experiments on ternary mixtures and complex fluids performed in DCMIX and planned to be performed in the context of the NEUF-DIX project are presented. Finally, multi-component mixtures studied in the SCCO project are detailed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.