In this work, we present an adaptive motion planning approach for impedance-controlled robots to modify their tasks based on human physical interactions. We use a class of parameterized time-independent dynamical systems for motion generation where the modulation of such parameters allows for motion flexibility. To adapt to human interactions, we update the parameters of our dynamical system in order to reduce the tracking error (i.e., between the desired trajectory generated by the dynamical system and the real trajectory influenced by the human interaction). We provide analytical analysis and several simulations of our method. Finally, we investigate our approach through real world experiments with a 7-DOF KUKA LWR 4+ robot performing tasks such as polishing and pick-and-place.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.