T heory predicts 1-4 that, with an ultrashort and extremely bright coherent X-ray pulse, a single diffraction pattern may be recorded from a large macromolecule, a virus or a cell before the sample explodes and turns into a plasma. Here we report the first experimental demonstration of this principle using the FLASH soft-X-ray free-electron laser. An intense 25 fs, 4 × 10 13 W cm −2 pulse, containing 10 12 photons at 32 nm wavelength, produced a coherent diffraction pattern from a nanostructured non-periodic object, before destroying it at 60,000 K. A novel X-ray camera assured single-photon detection sensitivity by filtering out parasitic scattering and plasma radiation. The reconstructed image, obtained directly from the coherent pattern by phase retrieval through oversampling 5-9 , shows no measurable damage, and is reconstructed at the diffraction-limited resolution. A three-dimensional data set may be assembled from such images when copies of a reproducible sample are exposed to the beam one by one 10 .X-ray free-electron lasers (FELs) are expected to permit diffractive imaging at high resolutions of nanometre-to micrometre-sized objects without the need for crystalline periodicity in the sample [1][2][3][4] . Structural studies within this size domain are particularly important in materials science, biology and medicine. Radiation-induced damage and sample movement prevent the accumulation of high-resolution scattering signals for such samples in conventional experiments 11,12 . Damage is caused by energy deposited into the sample by the very probes used for imaging, for example photons, electrons or neutrons. At X-ray frequencies, inner-shell processes dominate the ionization of the sample; photoemission is followed by Auger or fluorescence emission and shake excitations. The energies of the ejected photoelectrons, Auger electrons and shake electrons differ from each other, and these electrons are released at different times, but within about ten femtoseconds, following photoabsorption 1,13 . Thermalization of the ejected electrons through collisional electron cascades is completed within 10-100 fs (refs 14,15). Heat transport, diffusion and radical reactions take place over some picoseconds to milliseconds.The effect of X-ray-induced sample damage on the recorded image or diffraction pattern could be substantially reduced, if we could collect diffraction data faster than the relevant damage processes 1,16 . This approach requires very short and very bright X-ray pulses, such as those expected from a short-wavelength FEL. However, the large amount of energy deposited into the sample by a focused FEL pulse will ultimately turn the sample into a plasma. The question is when exactly would this happen. There are no experiments with X-rays in the relevant time and intensity nature physics VOL 2 DECEMBER 2006 www.nature.com/naturephysics
Featured Application: This article describes the layout of the European XFEL, a soft and hard X-ray free-electron laser user facility starting operation in 2017. Emphasis is put on the photon beam systems, scientific applications and the instrumentation of the scientific instruments of the European XFEL.Abstract: European XFEL is a free-electron laser (FEL) user facility providing soft and hard X-ray FEL radiation to initially six scientific instruments. Starting user operation in fall 2017 European XFEL will provide new research opportunities to users from science domains as diverse as physics, chemistry, geo-and planetary sciences, materials sciences or biology. The unique feature of European XFEL is the provision of high average brilliance in the soft and hard X-ray regime, combined with the pulse properties of FEL radiation of extreme peak intensities, femtosecond pulse duration and high degree of coherence. The high average brilliance is achieved through acceleration of up to 27,000 electron bunches per second by the super-conducting electron accelerator. Enabling the usage of this high average brilliance in user experiments is one of the major instrumentation drivers for European XFEL. The radiation generated by three FEL sources is distributed via long beam transport systems to the experiment hall where the scientific instruments are located side-by-side. The X-ray beam transport systems have been optimized to maintain the unique features of the FEL radiation which will be monitored using build-in photon diagnostics. The six scientific instruments are optimized for specific applications using soft or hard X-ray techniques and include integrated lasers, dedicated sample environment, large area high frame rate detector(s) and computing systems capable of processing large quantities of data.
We have developed different types of photodetectors that are based on the photoionization of a gas at a low target density. The almost transparent devices were optimized and tested for online photon diagnostics at current and future x-ray free-electron laser facilities on a shot-to-shot basis with a temporal resolution of better than 100 ns. Characterization and calibration measurements were performed in the laboratory of the Physikalisch-Technische Bundesanstalt at the electron storage ring BESSY II in Berlin. As a result, measurement uncertainties of better than 10% for the photon-pulse energy and below 20 m for the photon-beam position were achieved at the Free-electron LASer in Hamburg ͑FLASH͒. An upgrade for the detection of hard x-rays was tested at the Sub-Picosecond Photon Source in Stanford.
We report on the dynamics of ultrafast heating in cryogenic hydrogen initiated by a ≲300 fs, 92 eV free electron laser x-ray burst. The rise of the x-ray scattering amplitude from a second x-ray pulse probes the transition from dense cryogenic molecular hydrogen to a nearly uncorrelated plasmalike structure, indicating an electron-ion equilibration time of ∼0.9 ps. The rise time agrees with radiation hydrodynamics simulations based on a conductivity model for partially ionized plasma that is validated by two-temperature density-functional theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.