JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. This content downloaded from 128.235.251.160 on Tue
SUMMARY(1) Organic soil-wetlands, particularly those in the temperate zone, under natural conditions, are net carbon sinks and hence are important links in the global cycling of carbon dioxide and other atmospheric gases. Human alteration of wetlands has brought about shifts in the balance of carbon movement between the wetlands and the atmosphere. Because previous analyses have not fully considered these shifts, disturbance of carbon storage in organic soil-wetlands of the temperate zone has been analysed for the last two centuries and considered in relation to other sources of atmospheric CO2 from the biosphere.(2) Storage before recent disturbance is estimated as 57 to 83 Mt of carbon per year, over two-thirds of this in boreal peatlands. The total storage rate, lower than previous estimates, reflects accumulation rates of carbon of only 0.20 t ha-' yr-1 and less in the boreal zone where 90% of temperate organic soils are found.(3) Widespread drainage of organic soil-wetlands for agriculture has significantly altered the carbon balance. A computer model was used to track the consequent changes in the carbon balance of nine wetland regions. Drainage reduced or eliminated net carbon sinks, converting some wetlands into net carbon sources. Different regions thus can function as smaller carbon sinks, or as sources, depending on the extent of drainage. In either case a shift in carbon balance can be quantified.
We analyzed the dynamics of freshwater marsh vegetation of Taylor Slough in eastern Everglades National Park for the 1979 to 2003 period, focusing on cover of individual plant species and on cover and composition of marsh communities in areas potentially influenced by a canal pump station (''S332'') and its successor station (''S332D''). Vegetation change analysis incorporated the hydrologic record at these sites for three intervals: pre-S332 (1961-1980), S332 (1980-1999), post-S332 (1999-2002). During S332 and post-S332 intervals, water level in Taylor Slough was affected by operations of S332 and S332D. To relate vegetation change to plot-level hydrological conditions in Taylor Slough, we developed a weighted averaging regression and calibration model (WA) using data from the marl prairies of Everglades National Park and Big Cypress National Preserve. We examined vegetation pattern along five transects. Transects 1-3 were established in 1979 south of the water delivery structures, and were influenced by their operations. Transects 4 and 5 were established in 1997, the latter west of these structures and possibly under their influence. Transect 4 was established in the northern drainage basin of Taylor Slough, beyond the likely zones of influence of S332 and S332D. The composition of all three southern transects changed similarly after 1979. Where muhly grass (Muhlenbergia capillaris var. filipes) was once dominant, sawgrass (Cladium jamaicense), replaced it, while where sawgrass initially predominated, hydric species such as spikerush (Eleocharis cellulosa Torr.) overtook it. Most of the changes in species dominance in Transects 1-3 occurred after 1992, were mostly in place by 1995-1996, and continued through 1999, indicating how rapidly vegetation in seasonal Everglades marshes can respond to hydrological modifications. During the post-S332 period, these long-term trends began reversing. In the two northern transects, total cover and dominance of both muhly grass and sawgrass increased from 1997 to 2003. Thus, during the 1990's, vegetation composition south of S332 became more like that of long hydroperiod marshes, but afterward it partially returned to its 1979 condition, i.e., a community characteristic of less prolonged flooding. In contrast, the vegetation change along the two northern transects since 1997 showed little relationship to hydrologic status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.