The semi-device-independent approach provides a framework for prepareand-measure quantum protocols using devices whose behavior does not need to be characterized or trusted, except for a single assumption on the dimension of the Hilbert space characterizing the quantum carriers. Here, we propose instead to constrain the quantum carriers through a bound on the mean value of a well-chosen observable. This modified assumption is physically better motivated than a dimension bound and closer to the description of actual experiments. In particular, we consider quantum optical schemes where the source emits quantum states described in an infinite-dimensional Fock space and model our assumption as an upper bound on the average photon number in the emitted states. We characterize the set of correlations that may be exhibited in the simplest possible scenario compatible with our new framework, based on two energy-constrained state preparations and a two-outcome measurement. Interestingly, we uncover the existence of quantum correlations exceeding the set of classical correlations that can be produced by devices behaving in a purely pre-determined fashion (possibly including shared randomness). This feature suggests immediate applications to certified randomness generation. Along this line, we analyze the achievable correlations in several prepare-and-measure optical schemes with a mean photon-number constraint and demonstrate that they allow for the generation of certified randomness. Our simplest optical scheme works by the on-off keying of an attenuated laser source followed by photocounting. It opens the path to more sophisticated energy-constrained semi-device-independent quantum cryptography protocols, such as quantum key distribution.
The causal structure of any experiment implies restrictions on the observable correlations between measurement outcomes, which are different for experiments exploiting classical, quantum, or post-quantum resources. In the study of Bell nonlocality, these differences have been explored in great detail for more and more involved causal structures. Here, we go in the opposite direction and identify the simplest causal structure which exhibits a separation between classical, quantum, and post-quantum correlations. It arises in the socalled Instrumental scenario, known from classical causal models. We derive inequalities for this scenario and show that they are closely related to well-known Bell inequalities, such as the Clauser-Horne-Shimony-Holt inequality, which enables us to easily identify their classical, quantum, and post-quantum bounds as well as strategies violating the first two. The relations that we uncover imply that the quantum or post-quantum advantages witnessed by the violation of our Instrumental inequalities are not fundamentally different from those witnessed by the violations of standard inequalities in the usual Bell scenario.However, non-classical tests in the Instrumental scenario require fewer input choices than their Bell scenario counterpart, which may have potential implications for device-independent protocols.
We present a scheme for a self-testing quantum random number generator. Compared to the fully device-independent model, our scheme requires an extra natural assumption, namely that the mean energy per signal is bounded. The scheme is self-testing, as it allows the user to verify in real-time the correct functioning of the setup, hence guaranteeing the continuous generation of certified random bits. Based on a prepare-and-measure setup, our scheme is practical, and we implement it using only off-the-shelf optical components. The randomness generation rate is 1.25 Mbits/s, comparable to commercial solutions. Overall, we believe that this scheme achieves a promising trade-off between the required assumptions, ease-of-implementation and performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.