The effect of intracellular reduced glutathione (GSH) in the lead stress response of Saccharomyces cere-visiae was investigated. Yeast cells exposed to Pb, for 3 h, lost the cell proliferation capacity (viability) and decreased intracellular GSH level. The Pb-induced loss of cell viability was compared among yeast cells deficient in GSH1 (Dgsh1) or GSH2 (Dgsh2) genes and wild-type (WT) cells. When exposed to Pb, Dgsh1 and Dgsh2 cells did not display an increased loss of viability, compared with WT cells. However, the depletion of cellular thiols, including GSH, by treatment of WT cells with iodoacetamide (an alkylating agent, which binds covalently to thiol group), increased the loss of viability in Pb-treated cells. In contrast, GSH enrichment, due to the incubation of WT cells with amino acids mixture constituting GSH (L-glutamic acid, L-cysteine and glycine), reduced the Pb-induced loss of proliferation capacity. The obtained results suggest that intracellular GSH is involved in the defence against the Pbinduced toxicity; however, at physiological concentration, GSH seems not to be sufficient to prevent the Pb-induced loss of cell viability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.