Abstract. Dry deposition is a key component of surface–atmosphere exchange of compounds, acting as a sink for several chemical species. Meteorological factors, chemical properties of the trace gas considered and land surface properties are strong drivers of dry deposition efficiency and variability. Under both climatic and anthropogenic pressure, the vegetation distribution over the Earth has been changing a lot over the past centuries and could be significantly altered in the future. In this study, we perform a modeling investigation of the potential impact of land-cover changes between the present day (2006) and the future (2050) on dry deposition velocities at the surface, with special interest for ozone (O3) and nitric acid (HNO3), two compounds which are characterized by very different physicochemical properties. The 3-D chemistry-transport model LMDz-INCA is used, considering changes in vegetation distribution based on the three future projections, RCPs 2.6, 4.5 and 8.5, and present-day (2007) meteorology. The 2050 RCP 8.5 vegetation distribution leads to a rise of up to 7 % (+0.02 cm s−1) in the surface deposition velocity calculated for ozone (Vd,O3) and a decrease of −0.06 cm s−1 in the surface deposition velocity calculated for nitric acid (Vd,HNO3) relative to the present-day values in tropical Africa and up to +18 and −15 %, respectively, in Australia. When taking into account the RCP 4.5 scenario, which shows dramatic land-cover change in Eurasia, Vd,HNO3 increases by up to 20 % (annual-mean value) and reduces Vd,O3 by the same magnitude in this region. When analyzing the impact of surface dry deposition change on atmospheric chemical composition, our model calculates that the effect is lower than 1 ppb on annual-mean surface ozone concentration for both the RCP 8.5 and RCP 2.6 scenarios. The impact on HNO3 surface concentrations is more disparate between the two scenarios regarding the spatial repartition of effects. In the case of the RCP 4.5 scenario, a significant increase of the surface O3 concentration reaching locally by up to 5 ppb (+5 %) is calculated on average during the June–August period. This scenario also induces an increase of HNO3 deposited flux exceeding locally 10 % for monthly values. Comparing the impact of land-cover change to the impact of climate change, considering a 0.93 °C increase of global temperature, on dry deposition velocities, we estimate that the strongest increase over lands occurs in the Northern Hemisphere during winter, especially in Eurasia, by +50 % (+0.07 cm s−1) for Vd,O3 and +100 % (+0.9 cm s−1) for Vd,HNO3. However, different regions are affected by both changes, with climate change impact on deposition characterized by a latitudinal gradient, while the land-cover change impact is much more heterogeneous depending on vegetation distribution modification described in the future RCP scenarios. The impact of long-term land-cover changes on dry deposition is shown to be significant and to differ strongly from one scenario to another. It should therefore be considered in biosphere–atmospheric chemistry interaction studies in order to have a fully consistent picture.
The Surface Water and Ocean Topography (SWOT) space mission will map surface area and water level changes in lakes at the global scale. Such new data are of great interest to better understand and model lake dynamics as well as to improve water management. In this study, we used the large-scale SWOT simulator developed at the French Space National Center (CNES) to estimate the expected measurement errors of the water level of different water bodies in France. These water bodies include five large reservoirs of the Seine River and numerous small gravel pits located in the Seine alluvial plain of La Bassée upstream of the city of Paris. The results show that the SWOT mission will allow to observe water levels with a precision of a few tens of centimeters (10 cm for the largest water reservoir (Orient), 23 km2), even for the small gravel pits of size of a few hectares (standard deviation error lower than 0.25 m for water bodies larger than 6 ha). The benefit of the temporal sampling for water level monitoring is also highlighted on time series of pseudo-observations based on real measurements perturbed with the simulated noise errors. Then, the added value of these future data for the simulation of lake energy budgets is shown using the FLake lake model through sensitivity experiments. Results show that the SWOT data will help to model the surface temperature of the studied water bodies with a precision better than 0.5 K and the evaporation with an accuracy better than 0.2 mm/day. These large improvements compared to the errors obtained when a constant water level is prescribed (1.2 K and 0.6 mm/day) demonstrate the potential of SWOT for monitoring the lake energy budgets at global scale in addition to the other foreseen applications in operational reservoir management.
Supply of aggregate materials for every construction requires mining of sand and gravel, which leads to the formation of a myriad of freshwater lakes, a now common feature of the landscape in the valleys of large rivers. Typically small in size and shallow, they are filled with waters from the adjacent aquifers and directly exposed to the atmosphere. The creation of gravel pit lakes has various and contrasting effects on their immediate environment. This article first provides a review of these impacts from the hydrodynamic point of view, and illustrates them on simple numerical test cases. It also introduces the gravel pit lake module developed for the occasion within the integrated modelling platform CaWaQS, which formulation was tested on the same test cases against the Lak package, its Modflow counterpart. By accurately simulating gravel pit lake interactions with groundwater in different configurations, this modelling exercise also aims to identify the preponderant factors leading water level fluctuations of those artificial lakes, whose temporal monitoring will soon be accessible to satellite observation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.