In this paper, we provide R-estimators of the location of a rotationally symmetric distribution on the unit sphere of R-k. In order to do so we first prove the local asymptotic normality property of a sequence of rotationally symmetric models; this is a non-standard result due to the curved nature of the unit sphere. We then construct our estimators by adapting the Le Cam one-step methodology to spherical statistics and ranks. We show that they are asymptotically normal under any rotationally symmetric distribution and achieve the efficiency bound under a specific density. Their small sample behavior is studied via a Monte Carlo simulation and our methodology is illustrated on geological data
We consider the problem of testing uniformity on high-dimensional unit spheres. We are primarily interested in non-null issues. We show that rotationally symmetric alternatives lead to two Local Asymptotic Normality (LAN) structures. The first one is for fixed modal location θ θ θ and allows to derive locally asymptotically most powerful tests under specified θ θ θ. The second one, that addresses the Fisher-von Mises-Langevin (FvML) case, relates to the unspecified-θ θ θ problem and shows that the high-dimensional Rayleigh test is locally asymptotically most powerful invariant. Under mild assumptions, we derive the asymptotic non-null distribution of this test, which allows to extend away from the FvML case the asymptotic powers obtained there from Le Cam's third lemma. Throughout, we allow the dimension p to go to infinity in an arbitrary way as a function of the sample size n. Some of our results also strengthen the local optimality properties of the Rayleigh test in low dimensions. We perform a Monte Carlo study to illustrate our asymptotic results. Finally, we treat an application related to testing for sphericity in high dimensions.
This paper provides parametric and rank-based optimal tests for eigenvectors and eigenvalues of covariance or scatter matrices in elliptical families. The parametric tests extend the Gaussian likelihood ratio tests of Anderson (1963) and their pseudo-Gaussian robustifications by Davis (1977) and Tyler (1981, 1983). The rank-based tests address a much broader class of problems, where covariance matrices need not exist and principal components are associated with more general scatter matrices. The proposed tests are shown to outperform daily practice both from the point of view of validity as from the point of view of efficiency. This is achieved by utilizing the Le Cam theory of locally asymptotically normal experiments, in the nonstandard context, however, of a curved parametrization. The results we derive for curved experiments are of independent interest, and likely to apply in other contexts.Comment: Published in at http://dx.doi.org/10.1214/10-AOS810 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
Sign tests are among the most successful procedures in multivariate nonparametric statistics. In this paper, we consider several testing problems in multivariate analysis, directional statistics and multivariate time series analysis, and we show that, under appropriate symmetry assumptions, the fixed-p multivariate sign tests remain valid in the high-dimensional case. Remarkably, our asymptotic results are universal, in the sense that, unlike in most previous works in highdimensional statistics, p may go to infinity in an arbitrary way as n does. We conduct simulations that (i) confirm our asymptotic results, (ii) reveal that, even for relatively large p, chi-square critical values are to be favoured over the (asymptotically equivalent) Gaussian ones and (iii) show that, for testing i.i.d.-ness against serial dependence in the high-dimensional case, Portmanteau sign tests outperform their competitors in terms of validity-robustness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.