Cryogenic, superconducting digital processors offer the promise of greatly reduced operating power for server-class computing systems. This is due to the exceptionally low energy per operation of Single Flux Quantum circuits built from Josephson junction devices operating at the temperature of 4 Kelvin. Unfortunately, no suitable same-temperature memory technology yet exists to complement these SFQ logic technologies. Possible memory technologies are in the early stages of development but will take years to reach the cost per bit and capacity capabilities of current semiconductor memory. We discuss the pros and cons of four alternative memory architectures that could be coupled to SFQ-based processors. Our feasibility studies indicate that cold memories built from CMOS DRAM and operating at 77K can support superconducting processors at low cost-per-bit, and that they can do so today.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.