Solar wind Magnetosphere Ionosphere Link Explorer, is a joint science mission between the European Space Agency and the Chinese Academy of Sciences. The spacecraft will be uniquely equipped to study the interaction between the Earth's magnetosphere-ionosphere system and the solar wind on a global scale. SMILE's instruments will explore this science through imaging of the solar wind charge exchange soft X-ray emission from the dayside magnetosheath, simultaneous imaging of the UV northern aurora and in-situ monitoring of the solar wind and magnetosheath plasma and magnetic field conditions.The Soft X-ray Imager (SXI) is the instrument being designed to observe X-ray photons emitted by the solar wind charge exchange process at photon energies between 200 eV and 2000 eV. X-rays will be collected using a focal plane array of two custom-designed CCDs, each consisting of 18 µm square pixels in a 4510 by 4510 array.SMILE will be placed in a highly elliptical polar orbit, passing in and out of the Earth's radiation belts every 48 hours. Radiation damage accumulated in the CCDs during the mission's nominal 3-year lifetime will degrade their performance (such as through decreases in charge transfer efficiency), negatively impacting the instrument's ability to detect low energy X-rays incident on the regions of the CCD image area furthest from the detector outputs. The design of the SMILE-SXI CCDs is presented here, including features and operating methods for mitigating the effects of radiation damage and expected end of life CCD performance. Measurements with a PLATO device 1Corresponding author.
Throughout a typical Earth orbit a satellite is constantly bombarded by radiation with trapped and solar protons being of particular concern as they gradually damage the focal plane devices throughout the mission and degrade their performance. To understand the impact the damage has on CCDs and how it varies with their thermal history a proton radiation campaign has been carried out using a CCD280. The CCD is irradiated at 153 K and gradually warmed to 188 K in 5 K increments with Fe55 X-ray, dark current and trap pumping images taken at 153 K after each anneal step. The results show that despite the trap landscape changing throughout the anneal it has little impact on parallel charge transfer inefficiency. This is thought to be because most traps are unaffected and a lot of those that do anneal only move from the continuum between distinct trap species and into a nearby divacancy trap “peak” whose emission time constant is similar enough to still impact the CTI. In terms of using a CCD280 or similar devices in a mission the CTI being unaffected by thermal annealing up to 188 K means that any CTI correction needed as the radiation damage builds up does not have to take into account the thermal history of the focal plane. However, it is possible that a significant amount of annealing will occur at temperatures greater than 188 K and care should be taken when a mission is operating in this range to gather accurate pre-flight data.
A monolithic CMOS image sensor based on the pinned photodiode (PPD) and optimized for X-ray imaging in the 300 eV to 5 keV energy range is described. Featuring 40 µm square pixels and 40 µm thick, high resistivity epitaxial silicon, the sensor is fully depleted by reverse substrate bias. Backside illumination (BSI) processing has been used to achieve high X-ray QE, and a dedicated pixel design has been developed for low image lag and high conversion gain. The sensor, called CIS221-X, is manufactured in a 180 nm CMOS process and has three different 512×128-pixel arrays on 40 µm pitch, as well as a 2048×512 array of 10 µm pixels. CIS221-X also features per-column 12-bit ADCs, digital readout via four highspeed LVDS outputs, and can be read out at 45 frames per second. CIS221-X achieves readout noise of 2.6 e-RMS and full width at half maximum (FWHM) at the Mn-Kα 5.9 keV characteristic X-ray line of 153 eV at -40 °C. This paper presents the characterization results of the first backside illuminated CIS221-X, including X-ray response and readout noise. The newly developed sensor and the technology underpinning it is intended for diverse applications, including Xray astronomy, synchrotron, and X-ray free electron laser light sources.
Teledyne-e2v's sensors and wafer-scale processing are widely used for high performance imaging across soft X-ray and optical bands. In the ultraviolet spectral range, the combination of short absorption lengths (below 10 nm) and high reflectance (up to 75 %) can strongly limit the quantum efficiency. Direct detection capability relies on back-illumination and back-thinning processes to be applied to a sensor to remove dead layers from the optical path. As the thinning process leaves an unacceptably thick backside potential well as well as a highly reflective surface, in-house ultraviolet-specific (e.g. for WUVS) or third-party processes (e.g. delta-doping for FIREBall) are required.We have calibrated Teledyne-e2v's latest in-house wafer-scale proprietary processes with monochromatic synchrotron radiation over a wide spectral range in the ultraviolet domain (λ=40 nm -400 nm) at the Metrology Light Source of the Physikalisch-Technische Bundesanstalt. The first process is a shallow p+ implantation that permits the thinning of the backside potential well. It is available in two different levels: basic and enhanced. The second type of enhancement is a specific anti-reflective coating to increase the back-surface transmittance for distinct spectral ranges.In this paper, we will present comparative quantum efficiency calibration of both passivation stages and of two different ultraviolet specific anti-reflective coatings (applied on enhanced passivation devices). Also, their stability after intense ultraviolet illumination will be shown. These measurements will permit Teledyne-e2v to extend the quantum efficiency data of their most recent processes across the soft X-ray to near-infrared spectrum.
A prototype CMOS Image Sensor optimised for soft X-ray applications has been designed by the Centre for Electronic Imaging in partnership with Teledyne-e2v. The device features four different pixel variants (three variants of 40 μm pitch pixels, and one variant of 10 μm pixels) each covering a quarter of the 2 × 2 cm2 image area. The pixel designs feature fully depleted pinned photodiodes using reverse substrate bias and have been optimised for low noise operation, high responsivity and low image lag. The fabricated front-illuminated devices have been tested in a custom-built vacuum test setup at operating temperatures between -30°C and -40°C. The sensors feature less than 5 e- RMS readout noise and energy resolution of 142 eV at Mn-Kα (5.9 keV). The response to soft X-ray with different sensor parameters (e.g. pixel pitch, deep-depletion extension implant depth, and back-bias voltage) is also studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.