In a range of human trials, viral vectors have emerged as safe and effective delivery vehicles for clinical gene therapy, particularly for monogenic recessive disorders, but there has also been early work on some idiopathic diseases. These successes have been enabled by research and development efforts focusing on vectors that combine low genotoxicity and immunogenicity with highly efficient delivery, including vehicles based on adeno-associated virus and lentivirus, which are increasingly enabling clinical success. However, numerous delivery challenges must be overcome to extend this success to many diseases; these challenges include developing techniques to evade preexisting immunity, to ensure more efficient transduction of therapeutically relevant cell types, to target delivery, and to ensure genomic maintenance. Fortunately, vector-engineering efforts are demonstrating promise in the development of next-generation gene therapy vectors that can overcome these barriers. This review highlights key historical trends in clinical gene therapy, the recent clinical successes of viral-based gene therapy, and current research that may enable future clinical application.
We used the integrase from phage phiC31 to integrate the human Factor IX (hFIX) gene permanently into specific sites in the mouse genome. A plasmid containing attB and an expression cassette for hFIX was delivered to the livers of mice by using high-pressure tail vein injection. When an integrase expression plasmid was co-injected, hFIX serum levels increased more than tenfold to approximately 4 microg/ml, similar to normal FIX levels, and remained stable throughout the more than eight months of the experiment. hFIX levels persisted after partial hepatectomy, suggesting genomic integration of the vector. Site-specific integration was proven by characterizing and quantifying genomic integration in the liver at the DNA level. Integration was documented at two pseudo-attP sites, native sequences with partial identity to attP, with one site highly predominant. This study demonstrates in vivo gene transfer in an animal by site-specific genomic integration.
Subretinal injection of DNA followed by electroporation affords abundant transfer of plasmid DNA in rat RPE. phiC31 integrase confers robust long-term transgene expression by mediating genomic integration of the transgene. These findings suggest that phiC31 integrase may be a simple and effective tool for nonviral long-term gene transfer in the eye.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.