The Oxford Nanopore Technologies (ONT) MinION is a new sequencing technology that potentially offers read lengths of tens of kilobases (kb) limited only by the length of DNA molecules presented to it. The device has a low capital cost, is by far the most portable DNA sequencer available, and can produce data in real-time. It has numerous prospective applications including improving genome sequence assemblies and resolution of repeat-rich regions. Before such a technology is widely adopted, it is important to assess its performance and limitations in respect of throughput and accuracy. In this study we assessed the performance of the MinION by re-sequencing three bacterial genomes, with very different nucleotide compositions ranging from 28.6% to 70.7%; the high G + C strain was underrepresented in the sequencing reads. We estimate the error rate of the MinION (after base calling) to be 38.2%. Mean and median read lengths were 2 kb and 1 kb respectively, while the longest single read was 98 kb. The whole length of a 5 kb rRNA operon was covered by a single read. As the first nanopore-based single molecule sequencer available to researchers, the MinION is an exciting prospect; however, the current error rate limits its ability to compete with existing sequencing technologies, though we do show that MinION sequence reads can enhance contiguity of de novo assembly when used in conjunction with Illumina MiSeq data.
More than 100,000 genetic variants are classified as disease causing in public databases. However, the true penetrance of many of these rare alleles is uncertain and might be over-estimated by clinical ascertainment. Here, we use data from 379,768 UK Biobank (UKB) participants of European ancestry to assess the pathogenicity and penetrance of putatively clinically important rare variants. Although rare variants are harder to genotype accurately than common variants, we were able to classify as high quality 1,244 of 4,585 (27%) putatively clinically relevant rare (MAF < 1%) variants genotyped on the UKB microarray. We defined as “clinically relevant” variants that were classified as either pathogenic or likely pathogenic in ClinVar or are in genes known to cause two specific monogenic diseases: maturity-onset diabetes of the young (MODY) and severe developmental disorders (DDs). We assessed the penetrance and pathogenicity of these high-quality variants by testing their association with 401 clinically relevant traits. 27 of the variants were associated with a UKB trait, and we were able to refine the penetrance estimate for some of the variants. For example, the HNF4A c.340C>T (p.Arg114Trp) (GenBank:
NM_175914.4
) variant associated with diabetes is <10% penetrant by the time an individual is 40 years old. We also observed associations with relevant traits for heterozygous carriers of some rare recessive conditions, e.g., heterozygous carriers of the ERCC4 c.2395C>T (p.Arg799Trp) variant that causes Xeroderma pigmentosum were more susceptible to sunburn. Finally, we refute the previous disease association of
RNF135
in developmental disorders. In conclusion, this study shows that very large population-based studies will help refine our understanding of the pathogenicity of rare genetic variants.
SUMMARY
Hermes is a member of the hAT transposon superfamily which has active representatives, including McClintock's archetypal Ac mobile genetic element, in many eukaryotic species. The crystal structure of the Hermes transposase-DNA complex reveals that Hermes forms an octameric ring organized as a tetramer of dimers. While isolated dimers are active in vitro for all the chemical steps of transposition, only octamers are active in vivo. The octamer can provide not only multiple specific DNA-binding domains to recognize repeated subterminal sequences within the transposon ends, which are important for activity, but also multiple non-specific DNA binding surfaces for target capture. The unusual assembly explains the basis of bipartite DNA recognition at hAT transposon ends, provides a rationale for transposon end asymmetry, and suggests how the avidity provided by multiple sites of interaction could allow a transposase to locate its transposon ends amidst a sea of chromosomal DNA.
The most common genetic cause of neonatal diabetes and hyperinsulinism is pathogenic variants in ABCC8 and KCNJ11. These genes encode the subunits of the β-cell ATP-sensitive potassium channel, a key component of the glucose-stimulated insulin secretion pathway. Mutations in the two genes cause dysregulated insulin secretion; inactivating mutations cause an oversecretion of insulin, leading to congenital hyperinsulinism, whereas activating mutations cause the opposing phenotype, diabetes. This review focuses on variants identified in ABCC8 and KCNJ11, the ---This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.