Bacterial restriction endonucleases containing the dinucleotide CpG in their cleavage sequences were used to compare the methylation patterns of primarily repeated DNA sequences in (1) bovine somatic cell native DNAs vs bovine sperm cell native DNA and (2) native vs renatured bovine liver and sperm cell DNAs. The restriction patterns of sperm native DNA differ markedly from those of somatic cell native DNAs when using Hpa II, Hha I, and Ava I but not when using the enzymes Eco RI and Msp I. Digestion patterns of germ cell renatured DNA differed significantly from those of germ cell native DNA when using Hpa II but not when using Msp I or Eco RI. The results may not be due to artifacts of renaturation of the DNAs. The results are consistent with the concept that germ cell DNA may be strand asymmetrically hemimethylated. The data also suggest that methylation of the 5'-cytosine in the sequence CCGG renders this site insensitive to cleavage by Msp I.
Novikoff rat hepatoma and bovine liver DNAs were digested with Msp I or Hpa II. Restriction fragments were end-labeled using [alpha-32P]-dCTP and the Klenow fragment of E. coli DNA polymerase I and then digested to 2'-deoxyribonucleoside-3'-monophosphates using micrococcal nuclease and spleen phosphodiesterase. Mononucleotides were separated by two-dimensional thin layer chromatography, localized by radioautography, and the [32P]-label quantitated by scintillation spectrometry. This method, based on known specificities of Msp I and Hpa II, shows that CCGG, CMGG, and MCGG (M refers to 5-methylcytosine) occur at frequencies of 89.6%, 1.4%, and 9.0%, respectively, in the rat DNA and at 41.6%, 48.3%, and 10.0%, respectively, in the bovine DNA. [32P] recovery in 3'-5-MedCMP from end-labeled Msp I digests was negligible compared to recovery from Hpa II digests. Hence, Msp I is sensitive to methylation at the 5' cytosine in the sequence CCGG.
Partial purification of DNA methylase from Novikoff rat hepatoma cells is described. Contamination with other proteins persists although the enzyme preparation has a high specific activity and is purified 980-fold over homogenate activity. Evidence suggests, but does not prove, that there may be more than one species of DNA methylase in these cells. The enzyme has two broad pH optima at pH 7.0 and 7.5 and most readily methylates heterologous denatured DNAs although complex reaction kinetics indicate that native DNAs may eventually be methylated to an equal or greater level. The preparation of undermethylated DNA from Novikoff cells is also described. Undermethylated homologous DNA is an 85-fold greater acceptor of methyl groups than fully methylated Novikoff cell DNA. In contrast to other DNA substrates, the enzyme preparation methylates native undermethylated homologous DNA at a 3.5-fold greater than denatured undermethylated homologous DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.