We tested the hypotheses that Ca(2+) concentration ([Ca(2+)]) and sarcomere length (SL) modulate force development via graded effects on cross-bridge kinetics in chemically permeabilized rat cardiac trabeculae. Using sinusoidal length perturbations, we derived the transfer functions of stiffness over a range of [Ca(2+)] at a constant SL of 2.1 micrometer (n = 8) and at SL of 2.0, 2.1, and 2.2 micrometer (n = 4). We found that changes in SL affected only the magnitude of stiffness, whereas [Ca(2+)] affected the magnitude and phase-frequency relations. The data were fit to complex functions of two exponential processes. The characteristic frequencies (b and c) of these processes are indexes of cross-bridge kinetics, with b relating to cross-bridge attachment to and c to detachment from certain non-force-generating states. Both were significantly affected by [Ca(2+)], with an increase in b and c of 140 and 44%, respectively, over the range of [Ca(2+)] studied (P < 0.01). In contrast, SL had no effect on the characteristic frequencies (P > 0.6). We conclude that Ca(2+) activation modulates force development in rat myocardium, at least in part, via a graded effect on cross-bridge kinetics, whereas SL effects are mediated mainly by recruitment of cross bridges.
These results suggest that the depressed cardiac function of end-stage myocardial hypertrophy may be due, in part, to altered contractile protein function.
 3 -adrenergic receptors (AR) have recently been identified in mammalian hearts and shown to be up-regulated in heart failure (HF).  3 -AR stimulation reduces inotropic response associated with an inhibition of L-type Ca 2ϩ channels in normal hearts; however, the effects of  3 -AR activation on Ca 2ϩ channel in HF remain unknown. We compared the effects of  3 -AR activation on L-type Ca 2ϩ current (I Ca,L ) in isolated left ventricular myocytes obtained from normal and age-matched rats with isoproterenol (ISO)-induced HF (4 months after 340 mg/kg s.c.
The influence of metabolic substrate on contractile strength, myocardial oxygen consumption (MVO2), high- and low-energy phosphate levels, and intracellular pH were determined in isovolumically contracting isolated rat hearts perfused with solutions containing either glucose or hexanoate at both high and low coronary perfusion pressures (CPP). Contractile strength was not significantly influenced by substrate at a CPP of 80 mmHg. As coronary flow was decreased, developed pressure measured at a fixed left ventricular volume (LVV) was lower during hexanoate than glucose perfusion. The relationship between MVO2 and mechanical work determined at a CPP of 80 mmHg over a range of LVVs was shifted upward in a parallel manner when substrate was switched from glucose to hexanoate. The MVO2-work relationship measured at a fixed LVV but over a range of coronary flows (7-20 ml/min) was also parallel shifted upward on switching from glucose to hexanoate. Basal MVO2 was greater during hexanoate than glucose perfusion by an amount that accounted for two-thirds the total increase in MVO2 observed between the substrates under unloaded beating conditions. The remainder of the difference was attributed to increased energy requirements for excitation-contraction coupling. Inorganic phosphate concentrations increased more and phosphocreatine concentrations decreased more during low-flow conditions (3 ml/min) when hearts were perfused with hexanoate compared with glucose. Thus hexanoate decreases myocardial efficiency compared with glucose in large part by increasing non-work-related oxygen demands. This inefficiency impacts adversely on contractile strength and high-energy phosphate concentrations at low coronary flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.