<div>The National Institute of Standards and Technology defines the fundamental characteristics of cloud computing as: on-demand computing, offered via the network, using pooled resources, with rapid elastic scaling and metered charging. The rapid dynamic allocation and release of resources on demand to meet heterogeneous computing needs is particularly challenging for data centres, which process a huge amount of data characterised by its high volume, velocity, variety and veracity (4Vs model). Data centres seek to regulate this by monitoring and adaptation, typically reacting to service failures after the fact. We present a real cloud test bed with the capabilities of proactively monitoring and gathering cloud resource information for making predictions and forecasts. This contrasts with the state-of-the-art reactive monitoring of cloud data centres. We argue that the behavioural patterns and Key Performance Indicators (KPIs) characterizing virtualized servers, networks, and database applications can best be studied and analysed with predictive models. Specifically, we applied the Boosted Decision Tree machine learning algorithm in making future predictions on the KPIs of a cloud server and virtual infrastructure network, yielding an R-Square of 0.9991 at a 0.2 learning rate. This predictive framework is beneficial for making short- and long-term predictions for cloud resources.</div>
<div>The National Institute of Standards and Technology defines the fundamental characteristics of cloud computing as: on-demand computing, offered via the network, using pooled resources, with rapid elastic scaling and metered charging. The rapid dynamic allocation and release of resources on demand to meet heterogeneous computing needs is particularly challenging for data centres, which process a huge amount of data characterised by its high volume, velocity, variety and veracity (4Vs model). Data centres seek to regulate this by monitoring and adaptation, typically reacting to service failures after the fact. We present a real cloud test bed with the capabilities of proactively monitoring and gathering cloud resource information for making predictions and forecasts. This contrasts with the state-of-the-art reactive monitoring of cloud data centres. We argue that the behavioural patterns and Key Performance Indicators (KPIs) characterizing virtualized servers, networks, and database applications can best be studied and analysed with predictive models. Specifically, we applied the Boosted Decision Tree machine learning algorithm in making future predictions on the KPIs of a cloud server and virtual infrastructure network, yielding an R-Square of 0.9991 at a 0.2 learning rate. This predictive framework is beneficial for making short- and long-term predictions for cloud resources.</div>
Cloud computing depends on the dynamic allocation and release of resources, on demand, to meet heterogeneous computing needs. This is challenging for cloud data centers, which process huge amounts of data characterised by its high volume, velocity, variety and veracity (4Vs model). Managing such a workload is increasingly difficult using state-of-the-art methods for monitoring and adaptation, which typically react to service failures after the fact. To address this, we seek to develop proactive methods for predicting future resource exhaustion and cloud service failures. Our work uses a realistic test bed in the cloud, which is instrumented to monitor and analyze resource usage. In this paper, we employed the optimal Kalman filtering technique to build a predictive and analytic framework for cloud server KPIs, based on historical data. Our k-step-ahead predictions on historical data yielded a prediction accuracy of 95.59%. The information generated from the framework can best be used for optimal resources provisioning, admission control and cloud SLA management.
Cloud computing depends on the dynamic allocation and release of resources, on demand, to meet heterogeneous computing needs. This is challenging for cloud data centers, which process huge amounts of data characterised by its high volume, velocity, variety and veracity (4Vs model). Managing such a workload is increasingly difficult using state-of-the-art methods for monitoring and adaptation, which typically react to service failures after the fact. To address this, we seek to develop proactive methods for predicting future resource exhaustion and cloud service failures. Our work uses a realistic test bed in the cloud, which is instrumented to monitor and analyze resource usage. In this paper, we employed the optimal Kalman filtering technique to build a predictive and analytic framework for cloud server KPIs, based on historical data. Our k-step-ahead predictions on historical data yielded a prediction accuracy of 95.59%. The information generated from the framework can best be used for optimal resources provisioning, admission control and cloud SLA management.
This is a repository copy of Regression analysis of predictions and forecasts of cloud data center KPIs using the boosted decision tree algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.