Deep convolutional neural networks have led to breakthrough results in numerous practical machine learning tasks such as classification of images in the ImageNet data set, control-policy-learning to play Atari games or the board game Go, and image captioning. Many of these applications first perform feature extraction and then feed the results thereof into a trainable classifier. The mathematical analysis of deep convolutional neural networks for feature extraction was initiated by Mallat, 2012. Specifically, Mallat considered so-called scattering networks based on a wavelet transform followed by the modulus non-linearity in each network layer, and proved translation invariance (asymptotically in the wavelet scale parameter) and deformation stability of the corresponding feature extractor. This paper complements Mallat's results by developing a theory that encompasses general convolutional transforms, or in more technical parlance, general semi-discrete frames (including Weyl-Heisenberg filters, curvelets, shearlets, ridgelets, wavelets, and learned filters), general Lipschitz-continuous non-linearities (e.g., rectified linear units, shifted logistic sigmoids, hyperbolic tangents, and modulus functions), and general Lipschitz-continuous pooling operators emulating, e.g., sub-sampling and averaging. In addition, all of these elements can be different in different network layers. For the resulting feature extractor we prove a translation invariance result of vertical nature in the sense of the features becoming progressively more translation-invariant with increasing network depth, and we establish deformation sensitivity bounds that apply to signal classes such as, e.g., bandlimited functions, cartoon functions, and Lipschitz functions.
Deep convolutional neural networks have led to breakthrough results in practical feature extraction applications. The mathematical analysis of these networks was pioneered by Mallat [1]. Specifically, Mallat considered so-called scattering networks based on identical semi-discrete wavelet frames in each network layer, and proved translation-invariance as well as deformation stability of the resulting feature extractor. The purpose of this paper is to develop Mallat's theory further by allowing for different and, most importantly, general semidiscrete frames (such as, e.g., Gabor frames, wavelets, curvelets, shearlets, ridgelets) in distinct network layers. This allows to extract wider classes of features than point singularities resolved by the wavelet transform. Our generalized feature extractor is proven to be translation-invariant, and we develop deformation stability results for a larger class of deformations than those considered by Mallat. For Mallat's wavelet-based feature extractor, we get rid of a number of technical conditions. The mathematical engine behind our results is continuous frame theory, which allows us to completely detach the invariance and deformation stability proofs from the particular algebraic structure of the underlying frames.
Abstract-Wiatowski and Bölcskei, 2015, proved that deformation stability and vertical translation invariance of deep convolutional neural network-based feature extractors are guaranteed by the network structure per se rather than the specific convolution kernels and non-linearities. While the translation invariance result applies to square-integrable functions, the deformation stability bound holds for band-limited functions only. Many signals of practical relevance (such as natural images) exhibit, however, sharp and curved discontinuities and are, hence, not band-limited. The main contribution of this paper is a deformation stability result that takes these structural properties into account. Specifically, we establish deformation stability bounds for the class of cartoon functions introduced by Donoho, 2001.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.