We demonstrate sub-100 nm resolution water-window soft X-ray full-field transmission microscopy with a compact system. The microscope operates at lambda = 3.37 nm and is based on a 100 Hz table-top regenerative debris-free droplet-target laser-plasma X-ray source in combination with normal-incidence multilayer condenser optics for sample illumination. High-spatial-resolution imaging is performed with a 7.3% efficiency nickel zone plate and a 1024 x 1024 pixel CCD detector. Images of dry test samples are recorded with exposure times of a few minutes and show features smaller than 60 nm.
Progress in lithography and nanofabrication [E. Di Fabrizio et al., Nature (London) 401, 895 (1999)] has made it possible to apply differential interference contrast (DIC) in x-ray microscopy using an original x-ray doublet lens based on two specially developed zone plates. Switching from bright-field imaging (absorption contrast) to x-ray DIC, we observe, similar to visible-light microscopy, a dramatic increase in image contrast for weak absorbing samples. We anticipate that this technique will have a significant impact on x-ray imaging and may play a role comparable to DIC imaging in visible-light microscopy.
We report on a soft x-ray microscope using a gas-discharge plasma with pseudo spark-like electrode geometry as a light source. The source produces a radiant intensity of 4 x 10(13) photons/(sr pulse) for the 2.88 nm emission line of helium-like nitrogen. At a demonstrated 1 kHz repetition rate a brilliance of 4.3 x 10(9) photons/(microm2 sr s) is obtained for the 2.88 nm line. Ray-tracing simulations show that, employing an adequate grazing incidence collector, a photon flux of 1 x 10(7) photons/(microm2 s) can be achieved with the current source. The applicability of the presented pinch plasma concept to soft x-ray microscopy is demonstrated in a proof-of-principle experiment.
Coherent diffractive imaging for the reconstruction of a two-dimensional (2D) finite crystal structure with a single pulse train of free-electron laser radiation at 7.97 nm wavelength is demonstrated. This measurement shows an advance on traditional coherent imaging techniques by applying it to a periodic structure. It is also significant that this approach paves the way for the imaging of the class of specimens which readily form 2D, but not three-dimensional crystals. We show that the structure is reconstructed to the detected resolution, given an adequate signal-to-noise ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.