The Slam toolkit demonstrates that predicate abstraction enables automated verification of real world Windows device drivers. Our predicate abstraction-based tool DDVerify enables the automated verification of Linux device drivers and provides an accurate model of the relevant parts of the kernel. We report on benchmarks based on Linux device drivers, confirming the results that Slam established for the Windows world. Furthermore, we take predicate abstraction one step further and introduce a technique to verify concurrent software with shared memory.
We present a dynamic model to study ordering of particles on arbitrary curved surfaces. Thereby the particles are represented as maxima in a density field and a surface partial differential equation for the density field is solved to the minimal energy configuration. We study annihilation of dislocations within the ordered system and premelting along grain-boundary scars. The obtained minimal energy configurations on a sphere are compared with existing results and scaling laws are computed for the number of excess dislocations as a function of system size.
We consider the classical problem to find optimal distributions of interacting particles on a sphere by solving an evolution problem for a particle density. The higher order surface partial differential equation is an approximation of a surface dynamic density functional theory. We motivate the approach phenomenologically and sketch a derivation of the model starting from an interatomic potential. Different numerical approaches are discussed to solve the evolution problem: (a) an implicit approach to describe the surface using a phase-field description, (b) a parametric finite element approach, and (c) a spectral method based on nonequispaced fast Fourier transforms on the sphere. Results for computed minimal energy configurations are discussed for various particle numbers and are compared with known rigorous asymptotic results. Furthermore extensions to other more complex and evolving surfaces are mentioned
A theoretical explanation of the existence of lipid rafts in cell membranes remains a topic of lively debate. Large, micrometer sized rafts are readily observed in artificial membranes and can be explained using thermodynamic models for phase separation and coarsening. In live cells such domains are not observed and various models are proposed to describe why the systems do not coarsen. We review these attempts critically and show within a phase field approach that membrane bound proteins have the potential to explain the different behaviour observed in vitro and in vivo. Large scale simulations are performed to compute scaling laws and size distribution functions under the influence of membrane bound proteins and to observe a significant slow down of the domain coarsening at longer times and a breakdown of the self-similarity of the size-distribution function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.