Several classes of systems of evolution equations with one or two vector unknowns are considered. We investigate also systems with one vector and one scalar unknown. For these classes all equations having the simplest higher symmetry are listed.
The paper compares computational aspects of four approaches to compute conservation laws of single Differential Equations (DEs) or systems of them, ODEs and PDEs. The only restriction, required by two of the four corresponding computer algebra programs, is that each DE has to be solvable for a leading derivative. Extra constraints for the conservation laws can be specified. Examples include new conservation laws that are non-polynomial in the functions, that have an explicit variable dependence and families of conservation laws involving arbitrary functions. The following equations are investigated in examples: Ito, Liouville, Burgers, Kadomtsev-Petviashvili, Karney-Sen-Chu-Verheest, Boussinesq, Tzetzeica, Benney.
The talk given by the author at the CRM workshop on Superintegrability in Sep. 2002 and this related paper report on work in two subjects. One is the collaboration with Vladimir Sokolov and Takayuki Tsuchida in an effort to classify polynomial integrable vector evolution equations. The other is the computer algebra package Crack which did the main computations in solving large bi-linear algebraic systems. Although originally designed to solve over-determined systems of partial differential equations a number of extensions made Crack a powerful tool for solving systems of bi-linear algebraic equations. Such systems turn up in many different classification problems some of which were investigated by other participants of this workshop. In sections 5 and 6 two additional applications are outlined.In the talk on which this article is based a method to reduce the length of equations was presented which proved to be useful in solving the bi-linear algebraic systems. Due to numerous asked questions about the computer program, a more complete overview is given in the appendix.
We perform a classification of integrable systems of mixed scalar and vector evolution equations with respect to higher symmetries. We consider polynomial systems that are homogeneous under a suitable weighting of variables. This paper deals with the KdV weighting, the Burgers (or potential KdV or modified KdV) weighting, the Ibragimov-Shabat weighting and two unfamiliar weightings. The case of other weightings will be studied in a subsequent paper. Making an ansatz for undetermined coefficients and using a computer package for solving bilinear algebraic systems, we give the complete lists of 2 nd order systems with a 3 rd order or a 4 th order symmetry and 3 rd order systems with a 5 th order symmetry. For all but a few systems in the lists, we show that the system (or, at least a subsystem of it) admits either a Lax representation or a linearizing transformation. A thorough comparison with recent work of Foursov and Olver is made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.