Bisphosphonate-associated osteonecrosis of the jaws (BP-ONJ) is one of the main side effects in patients treated with bisphosphonates for metastasis to the bone or osteoporosis. BP-ONJ usually occurs in patients treated with highly potent nitrogen-containing bisphosphonates. The exact mechanism of action and etiopathology is still unknown. In addition to inhibition of bone remodelling, an anti-angiogenetic effect has become the focus of research. The aim of these study was to investigate the effect of different bisphosphonates on human umbilicord vein endothelial cells (HUVEC) and endothelial progenitor cells (EPC), which play an important role in angiogenesis. Using varying concentrations, the impact of one non-nitrogen-containing bisphosphonate (clodronate) and three nitrogen-containing bisphosphonates (ibandronate, pamidronate and zoledronate) on HUVEC and EPC was analysed. The biologic behaviour of HUVEC after incubation with different bisphosphonates was measured in a Boyden migration assay as well as in a 3D angiogenesis assay. The number of apoptotic cells was measured by Tunnel assay. To underline the importance of neoangiogenesis in the context of BP-ONJ, we measured the EPC number after incubation with different bisphosphonates in vitro. HUVEC and EPC were significantly influenced by bisphosphonates at different concentrations compared with the non-treated control groups. The nitrogen-containing bisphosphonates pamidronate and zoledronate had the greatest impact on the cells, whereas clodronate followed by ibandronate was less distinct on cell function. These results underline the hypothesis that inhibited angiogenesis induced by bisphosphonates might be of relevance in the development and maintenance of BP-ONJ. The increased impact by highly potent bisphosphonates on HUVEC and EPC may explain the high prevalence of BP-ONJ in patients undergoing this treatment.
These results support the theory that BP-ONJ is a multifactorially caused disease because several cell lines of the oral cavity which are responsible for integrity and wound healing are negatively affected by nitrogen-containing bisphosphonates. Perioperative interruption of bisphosphonate application during dental surgical procedures--if possible--might be feasible to promote better wound healing.
Bisphosphonate-associated osteonecrosis of the jaw (BP-ONJ) is one of the most often seen side effects in patients treated with bisphosphonates, presenting clinically as a non-healing wound. One theory of BP-ONJ etiology describes a negative effect on soft tissues, especially on keratinocytes, which play an important role in oral wound healing and oral soft tissue regeneration. A high cell viability of keratinocytes, which can migrate to the affected location, is essential for wound healing. The aim of this in vitro study was to investigate the effect of differently potent bisphosphonates on human oral keratinocytes (HOK).Three nitrogen-containing bisphosphonates (ibandronate, pamidronate, and zoledronate) and one non-nitrogen-containing bisphosphonate (clodronate) were compared concerning their potency on cell viability (calcein assay and MTT assay), migration ability (Boyden chamber migration assay and scratch wound proliferation assay), and apoptosis (TUNEL assay) of HOK.The nitrogen-containing bisphosphonates, particularly highly potent pamidronate and zoledronate preparations, had a strong negative influence on cell viability, migration ability, and apoptosis of HOK. The non-nitrogen-containing clodronate even increased cell viability in higher concentrations.This study demonstrates that bisphosphonates have a strong influence on HOK on different cellular levels like cell viability, migration ability, and apoptosis rate. The results support the theory that BP-ONJ is a multifactorially caused disease.Furthermore, this in vitro study confirms the theory that perioperative interruption of bisphosphonate application during dental surgical procedures might be feasible to promote better tissue regeneration and wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.