BackgroundGibbons or small apes inhabit tropical and subtropical rain forests in Southeast Asia and adjacent regions, and are, next to great apes, our closest living relatives. With up to 16 species, gibbons form the most diverse group of living hominoids, but the number of taxa, their phylogenetic relationships and their phylogeography is controversial. To further the discussion of these issues we analyzed the complete mitochondrial cytochrome b gene from 85 individuals representing all gibbon species, including most subspecies.ResultsBased on phylogenetic tree reconstructions, several monophyletic clades were detected, corresponding to genera, species and subspecies. A significantly supported branching pattern was obtained for members of the genus Nomascus but not for the genus Hylobates. The phylogenetic relationships among the four genera were also not well resolved. Nevertheless, the new data permitted the estimation of divergence ages for all taxa for the first time and showed that most lineages emerged during four short time periods. In the first, between ~6.7 and ~8.3 mya, the four gibbon genera diverged from each other. In the second (~3.0 - ~3.9 mya) and in the third period (~1.3 - ~1.8 mya), Hylobates and Hoolock differentiated. Finally, between ~0.5 and ~1.1 mya, Hylobates lar diverged into subspecies. In contrast, differentiation of Nomascus into species and subspecies was a continuous and prolonged process lasting from ~4.2 until ~0.4 mya.ConclusionsAlthough relationships among gibbon taxa on various levels remain unresolved, the present study provides a more complete view of the evolutionary and biogeographic history of the hylobatid family, and a more solid genetic basis for the taxonomic classification of the surviving taxa. We also show that mtDNA constitutes a useful marker for the accurate identification of individual gibbons, a tool which is urgently required to locate hunting hotspots and select individuals for captive breeding programs. Further studies including nuclear sequence data are necessary to completely understand the phylogeny and phylogeography of gibbons.
BackgroundColobine monkeys constitute a diverse group of primates with major radiations in Africa and Asia. However, phylogenetic relationships among genera are under debate, and recent molecular studies with incomplete taxon-sampling revealed discordant gene trees. To solve the evolutionary history of colobine genera and to determine causes for possible gene tree incongruences, we combined presence/absence analysis of mobile elements with autosomal, X chromosomal, Y chromosomal and mitochondrial sequence data from all recognized colobine genera.ResultsGene tree topologies and divergence age estimates derived from different markers were similar, but differed in placing Piliocolobus/Procolobus and langur genera among colobines. Although insufficient data, homoplasy and incomplete lineage sorting might all have contributed to the discordance among gene trees, hybridization is favored as the main cause of the observed discordance. We propose that African colobines are paraphyletic, but might later have experienced female introgression from Piliocolobus/Procolobus into Colobus. In the late Miocene, colobines invaded Eurasia and diversified into several lineages. Among Asian colobines, Semnopithecus diverged first, indicating langur paraphyly. However, unidirectional gene flow from Semnopithecus into Trachypithecus via male introgression followed by nuclear swamping might have occurred until the earliest Pleistocene.ConclusionsOverall, our study provides the most comprehensive view on colobine evolution to date and emphasizes that analyses of various molecular markers, such as mobile elements and sequence data from multiple loci, are crucial to better understand evolutionary relationships and to trace hybridization events. Our results also suggest that sex-specific dispersal patterns, promoted by a respective social organization of the species involved, can result in different hybridization scenarios.
Of the 10,272 currently recognized reptile species, the trade of fewer than 8% are regulated by the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) and the European Wildlife Trade Regulations (EWTR). However, the International Union for Conservation of Nature (IUCN) Red List has assessed 45% of the world's reptile species and determined that at least 1390 species are threatened by “biological resource use”. Of these, 355 species are intentionally targeted by collectors, including 194 non-CITES-listed species. Herein we review the global reptile pet trade, its impacts, and its contribution to the over-harvesting of species and populations, in light of current international law. Findings are based on an examination of relevant professional observations, online sources, and literature (e.g., applicable policies, taxonomy [reptile database], trade statistics [EUROSTAT], and conservation status [IUCN Red List]). Case studies are presented from the following countries and regions: Australia, Central America, China, Galapagos Islands (Ecuador), Germany, Europe, India, Indonesia (Kalimantan), Islamic Republic of Iran, Japan, Madagascar, Mexico, New Zealand, the Philippines, South Africa, Sri Lanka, Vietnam, Western Africa, and Western Asia. The European Union (EU) plays a major role in reptile trade. Between 2004 and 2014 (the period under study), the EU member states officially reported the import of 20,788,747 live reptiles. This review suggests that illegal trade activities involve species regulated under CITES, as well as species that are not CITES-regulated but nationally protected in their country of origin and often openly offered for sale in the EU. Further, these case studies demonstrate that regulations and enforcement in several countries are inadequate to prevent the overexploitation of species and to halt illegal trade activities. (Résumé d'auteur
No abstract
Ovarian cycles in catarrhine primates are uniquely characterized by prolonged periods of sexual activity in which the timings of ovulation and copulation do not necessarily correspond. According to current hypotheses of primate social evolution, extended sexuality in multi-male groups might represent part of a female strategy to confuse paternity in order to reduce the risk of infanticide by males. We test this hypothesis by examining mating behaviour in relation to timing of ovulation and paternity outcome in a multi-male group of free-living Hanuman langurs. Using faecal progestogen measurements, we ¢rst document that female langurs have extended receptive periods in which the timing of ovulation is highly variable. Next, we demonstrate the capacity for paternity confusion by showing that ovulation is concealed from males and that copulations progressively decline throughout the receptive phase. Finally, we demonstrate multiple paternity, and show that despite a high degree of monopolization of receptive females by the dominant male, non-dominant males father a substantial proportion of o¡spring. We believe that this is the ¢rst direct evidence that extended periods of sexual activity in catarrhine primates may have evolved as a female strategy to confuse paternity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.