We investigated the determinants of hepatic clearance functions in a rat model of liver cirrhosis induced by phenobarbital/CCI4. Aminopyrine N-demethylation (ABT), galactose elimination (GBT), and serum bile acids (SBA) were determined in vivo. The livers were then characterized hemodynamically: intrahepatic shunting (IHS) was determined by microspheres and sinusoidal capillarization by measuring the extravascular albumin space (EVA) by a multiple indicator dilution technique. The intrinsic clearance was determined by assaying the activity of the rate-limiting enzymes in vitro. Hepatocellular volume (HCV) was measured by morphometry.ABT and SBA, but not GBT, differentiated cirrhotic from normal liver. IHS ranged from normal to 10%; all cirrhotic livers showed evidence of sinusoidal capillarization (reduced EVA). The cirrhotic livers showed a bimodal distribution of HCV, HCV being decreased in 50% of the cirrhotic livers.Multivariate analysis showed EVA and portal flow to be the main determinants of microsomal (ABT) and cytosolic (GBT) clearance function; SBA, by contrast, were determined solely by IHS.We conclude that sinusoidal capillarization is the main determinant of hepatic clearance, while serum bile acids reflect intrabepatic shunting. These findings emphasize the importance of alterations of hepatic nutritional flow to explain reduced clearance function in cirrhosis of the liver.
As the influence of diabetes on drug metabolism in patients is controversial, a study was performed to assess antipyrine (AP) disposition in controlled Type I and Type II diabetics and 2 age- and sex-matched control groups. In Type I diabetics, the half-life of AP was significantly reduced from 12.0 (controls) to 7.9 h, and the volume of distribution (V) was lowered from 733 to 569 ml.kg-1. The resulting plasma clearance and cumulative urinary excretion of AP and its metabolites over 24 h did not differ from controls. In Type II diabetics, the AP half-life (14.5 h) and V (568 ml.kg-1) did not differ from their age- and sex-matched controls (11.1 h and 643 ml.kg-1, respectively), but the plasma clearance of AP was significantly reduced by 30%, and urinary excretion was significantly reduced to 44% of controls. The differential effects of Types I and II diabetes on AP metabolism may explain, at least in part, the controversial data in the literature.
The effects of verapamil on hepatic and systemic hemodynamics and on liver function were investigated in 10 patients with portal hypertension due to advanced micronodular cirrhosis to verify whether, as it has been suggested, this calcium channel blocker may improve liver function and reduce portal pressure in these patients. The oral administration of 100 mg of verapamil caused systemic vasodilation, evidenced by a significant reduction in mean arterial pressure (-8.1 +/- 7.6%, p less than 0.025) and systemic vascular resistance (-12.5 +/- 9.5%, p less than 0.001), and increased heart rate (+13.9 +/- 10.4%, p less than 0.01). However, no beneficial effect was noted on portal pressure evaluated by hepatic vein catheterization (baseline 19.8 +/- 4.0, verapamil 20.2 +/- 3.6 mmHg, NS), hepatic blood flow (1.45 +/- 0.64 vs. 1.47 +/- 0.62 liters per min, NS) and hepatic vascular resistance (1.314 +/- 611 vs. 1,266 +/- 513 dyn per sec per cm-5, NS). Similarly, no change was observed in portal blood flow, measured in six patients by pulsed Doppler flowmeter (0.94 +/- 0.30 vs. 0.89 +/- 0.35 liter per min, NS). In addition, verapamil did not increase the hepatic intrinsic clearance of these patients (0.20 +/- 0.07 vs. 0.19 +/- 0.06 liter per min, NS). This study suggests that verapamil is of no beneficial effect in patients with advanced cirrhosis of the liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.