A water supply system is considered an essential service to the population as it is about providing an essential good for life. This system typically consists of several sensors, transducers, pumps, etc., and some of these elements have high costs and/or complex installation. The indirect measurement of a quantity can be used to obtain a desired variable, dispensing with the use of a specific sensor in the plant. Among the contributions of this technique is the design of the pressure controller using the adaptive control, as well as the use of an artificial neural network for the construction of nonlinear models using inherent system parameters such as pressure, engine rotation frequency and control valve angle, with the purpose of estimating the flow. Among the various contributions of the research, we can highlight the suppression in the acquisition of physical flow meters, the elimination of physical installation and others. The validation was carried out through tests in an experimental bench located in the Laboratory of Energy and Hydraulic Efficiency in Sanitation of the Federal University of Paraiba. The results of the soft sensor were compared with those of an electromagnetic flux sensor, obtaining a maximum error of 10%.
Vehicles are the major source of air pollution in modern cities, emitting excessive levels of CO2 and other noxious gases. Exploiting the OBD-II interface available on most vehicles, the continuous emission of such pollutants can be indirectly measured over time, although accuracy has been an important design issue when performing this task due the nature of the retrieved data. In this scenario, soft-sensor approaches can be adopted to process engine combustion data such as fuel injection and mass air flow, processing them to estimate pollution and transmitting the results for further analyses. Therefore, this article proposes a soft-sensor solution based on an embedded system designed to retrieve data from vehicles through their OBD-II interface, processing different inputs to provide estimated values of CO2 emissions over time. According to the type of data provided by the vehicle, two different algorithms are defined, and each follows a comprehensive mathematical formulation. Moreover, an unsupervised TinyML approach is also derived to remove outliers data when processing the computed data stream, improving the accuracy of the soft sensor as a whole while not requiring any interaction with cloud-based servers to operate. Initial results for an embedded implementation on the Freematics ONE+ board have shown the proposal’s feasibility with an acquisition frequency equal to 1Hz and emission granularity measure of gCO2/km.
Indirect measurement can be used as an alternative to obtain a desired quantity, whose physical positioning or use of a direct sensor in the plant is expensive or not possible. This procedure can been improved by means of feedback control strategies of a secondary variable, which can be measured and controlled. Its main advantage is a new form of dynamic response, with improvements in the response time of the measurement of the quantity of interest. In water pumping networks, this methodology can be employed for measuring the flow indirectly, which can be advantageous due to the high price of flow sensors and the operational complexity to install them in pipelines. In this work, we present the use of artificial intelligence techniques in the implementation of the feedback system for indirect flow measurement. Among the contributions of this new technique is the design of the pressure controller using the Fuzzy logic theory, which rules out the need for knowing the plant model, as well as the use of an artificial neural network for the construction of nonlinear models with the purpose of indirectly estimating the flow. The validation of the proposed approach was carried out through experimental tests in a water pumping system, fully automated and installed at the Laboratory of Hydraulic and Energy Efficiency in Sanitation at the Federal University of Paraiba (LENHS/UFPB). The results were compared with an electromagnetic flow sensor present in the system, obtaining a maximum relative error of 10%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.