Mutations in the coding region of the myostatin gene (MSTN) are known to cause an increased muscle mass (IMM) phenotype in several mammals, including mice, dogs, cattle and humans. In sheep, a mutation in the 3'-UTR region introducing a microRNA target site has been reported to cause an IMM-like phenotype because of downregulation of translation. Here we report a novel single base deletion in the coding region of the myostatin gene causing an IMM phenotype in Norwegian White Sheep, characterized by a high carcass conformation class and low fat class (EUROP classification system). The deletion disrupts the reading frame from amino acid (aa) position 320, ending in a premature stop codon in aa position 359. In our material, these MSTN mutations segregated in a pattern showing that they reside in two different haplotypes. The phenotypic effect of the single base deletion is more profound than that of the 3'-UTR mutation.
BackgroundOur aim was to estimate the effect of two myostatin (MSTN) mutations in Norwegian White Sheep, one of which is close to fixation in the Texel breed.MethodsThe impact of two known MSTN mutations was examined in a field experiment with Norwegian White Sheep. The joint effect of the two MSTN mutations on live weight gain and weaning weight was studied on 644 lambs. Carcass weight gain from birth to slaughter, carcass weight, carcass conformation and carcass fat classes were calculated in a subset of 508 lambs. All analyses were carried out with a univariate linear animal model.ResultsThe most significant impact of both mutations was on conformation and fat classes. The largest difference between the genotype groups was between the wild type for both mutations and the homozygotes for the c.960delG mutation. Compared to the wild types, these mutants obtained a conformation score 5.1 classes higher and a fat score 3.0 classes lower, both on a 15-point scale.ConclusionsBoth mutations reduced fatness and increased muscle mass, although the effect of the frameshift mutation (c.960delG) was more important as compared to the 3'-UTR mutation (c.2360G>A). Lambs homozygous for the c.960delG mutation grew more slowly than those with other MSTN genotypes, but had the least fat and the largest muscle mass. Only c.960delG showed dominance effects.
The Norwegian White sheep (NWS) and New Zealand Terminal Sire Composite (NZC) sheep breeds have been developed based on crossing of multiple breeds, mainly of Northern European origin. A close genetic relationship between these populations could enable across-country genomic evaluations. The main objectives of this study were to assess the genetic connectedness between Norwegian and New Zealand sheep populations and estimate numerous genetic diversity metrics for these two populations. A total of 792 NWS and 16,912 NZC animals were genotyped using a high-density Illumina SNP chip panel (∼606K SNPs). The NZC animals were grouped based on their breed composition as: Finn, Lamb Supreme, Primera, Texel, "Other Dual Purpose", and "Other Terminal Sire". The average level of linkage disequilibrium ranged from 0.156 (for Primera) to 0.231 (for Finn). The lowest consistency of gametic phase was estimated between NWS and Finn (0.397), and between NWS and Texel (0.443), respectively. Similar consistency of gametic phase was estimated between NWS and the other NZC populations (∼ 0.52). For all composite sheep populations analyzed in this study, the majority of runs of homozygosity (ROH) segments identified had short length (<2,500 kb), indicating ancient (instead of recent) inbreeding. The variation in the number of ROH segments observed in the NWS was similar to the variation observed in Primera and Lamb Supreme. There was no clear discrimination between NWS and NZC based on the first few principal components. In addition, based on admixture analyses, there seems to be a significant overlap of the ancestral populations that contributed to the development of both NWS and NZC. There were no evident signatures of selection in these populations, which might be due to recent crossbreeding. In conclusion, the NWS composite breed was shown to be moderately related to NZC populations, especially Primera and Lamb Supreme. The findings reported here indicate a promising opportunity for collaborative genomic analyses involving NWS and NZC sheep populations.
In this study we show that selection based on progeny testing is able to induce a rapid change in allele frequency, even when a fairly broad and balanced breeding goal is applied. The myostatin 3'-UTR mutation (c.*1232G>A) previously found to affect muscularity in Texel sheep is also present in the Norwegian White Sheep population. By genotyping the rams used for artificial insemination (born in1977-2006), a rapid increase in the c.*1232G>A allele frequency was observed, from 0.31 in 1990 to 0.82 in 2006. The major increase was observed after BLUP-based breeding values and the EUROP classification system for carcass quality was implemented in 1991 and 1996, respectively. The MSTN frameshift mutation c.960delG, recently identified in this population, did not show a similar increase in allele frequency during the same period, in spite that it has a strong desirable effect on meat and fat traits. The results also illustrate that unwanted side effects can rapidly be introduced into a population using an efficient breeding scheme. A system for monitoring changes in phenotypic traits additional to those under selection is therefore recommended to identify possible side effects at an early stage.
The goal of this study was to assess the feasibility of across‐country genomic predictions in Norwegian White Sheep (NWS) and New Zealand Composite (NZC) sheep populations with similar development history. Different training populations were evaluated (i.e., including only NWS or NZC, or combining both populations). Predictions were performed using the actual phenotypes (normalized) and the single‐step GBLUP via Bayesian inference. Genotyped NWS animals born in 2016 (N = 267) were used to assess the accuracy and bias of genomic estimated breeding values (GEBVs) predicted for birth weight (BW), weaning weight (WW), carcass weight (CW), EUROP carcass classification (EUC), and EUROP fat grading (EUF). The accuracy and bias of GEBVs differed across traits and training population used. For instance, the GEBV accuracies ranged from 0.13 (BW) to 0.44 (EUC) for GEBVs predicted including only NWS, from 0.06 (BW) to 0.15 (CW) when including only NZC, and from 0.10 (BW) to 0.41 (EUC) when including both NWS and NZC animals in the training population. The regression coefficients used to assess the spread of GEBVs (bias) ranged from 0.26 (BW) to 0.64 (EUF) for only NWS, 0.10 (EUC) to 0.52 (CW) for only NZC, and from 0.42 (WW) to 2.23 (EUC) for both NWS and NZC in the training population. Our findings suggest that across‐country genomic predictions based on ssGBLUP might be possible for NWS and NZC, especially for novel traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.