It is often assumed that reduced heat flux to a ventilated attic reduces the temperature and thereby increases the relative humidity. Consequently, the importance of having a tight air and vapour barrier in the ceiling becomes more important with increased insulation. Therefore, in Denmark, the recommendation is to have a tight vapour barrier when re-insulating ceilings against cold ventilated attics to a total of 150-mm insulation material. The recommendation is independent of the insulation material’s hygroscopic properties or the indoor moisture level. The aim of this project was to test the relevance of the recommendation through testing in a full-scale test building (7 × 22 m) with a series of six different ceilings with or without a vapour barrier and variation in the insulation material comprising insulation thickness and its hygroscopic properties. The examination was performed with a controlled indoor climate after an European humidity classes 1–3 and a natural outdoor climate. The study showed very little differences in temperature and relative humidity in the cold ventilated attics, while the humidity class of the indoor climate significantly affects the absolute moisture content in the attic. However, the climate in the attic did not cause mould growth in the test sections, even for humidity class 3. Consequently, in the test building the thickness or hygroscopic properties of the insulation material did not have a significant effect on the moisture level in attics and did not determine whether a vapour barrier should be installed. In this study with the given climate, a vapour barrier is unnecessary in well-ventilated attics if the ceiling is airtight.
A recently Danish study reported that no vapour barrier is needed in ceilings, if the attic is well ventilated and the ceiling towards the dwelling is airtight. Based on that study, new investigations were initiated with focus on the hygrothermal behaviour in ventilated attics with different air change rates. A test house with three sets of four different ceiling constructions – all airtight – was used in this study. The ventilation rate was reduced in two of the sets with approx. 35 % and 50 %, respectively. Air change rates were measured with tracer gas. Furthermore, temperature and relative humidity was measured every hour. Measurements in similar ceilings with mineral wool or cellulose-based insulation material show that hygroscopic properties of the insulation have very limited effect on relative humidity. Furthermore, only at low ventilation rate the effect of a vapour barrier could be measured with minor impact. Based on the short-measured period the calculations of the risk of mould growth showed no risk. The results indicate that even when the ventilation is reduced by 50 %, the ventilated attic still performs well if the ceiling is highly airtight. However, the importance of vapour barriers becomes more important at lower air change rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.