The control algorithm hierarchy of motion control for over-actuated mechanical systems with a redundant set of effectors and actuators commonly includes three levels. First, a high-level motion control algorithm commands a vector of virtual control efforts (i.e. forces and moments) in order to meet the overall motion control objectives. Second, a control allocation algorithm coordinates the different effectors such that they together produce the desired virtual control efforts, if possible. Third, low-level control algorithms may be used to control each individual effector via its actuators. Control allocation offers the advantage of a modular design where the high-level motion control algorithm can be designed without detailed knowledge about the effectors and actuators. Important issues such as input saturation and rate constraints, actuator and effector fault tolerance, and meeting secondary objectives such as power efficiency and tear-and-wear minimization are handled within the control allocation algorithm. The objective of the present paper is to survey control allocation algorithms, motivated by the rapidly growing range of applications that have expanded from the aerospace and maritime industries, where control allocation has its roots, to automotive, mechatronics, and other industries. The survey classifies the different algorithms according to two main classes based on the use of linear or nonlinear models, respectively. The presence of physical constraints (e.g input saturation and rate constraints), operational constraints and secondary objectives makes optimization-based design a powerful approach. The simplest formulations allow explicit solutions to be computed using numerical linear algebra in combination with some logic and engineering solutions, while the more challenging formulations with nonlinear models or complex constraints and objectives call for iterative numerical optimization procedures. Experiences using the different methods in aerospace, maritime, automotive and other application areas are discussed. The paper ends with some perspectives on new applications and theoretical challenges.
Abstract-We present a nonlinear adaptive path-following controller that compensates for drift forces through vehicle sideslip. Vehicle sideslip arises during path following when the vehicle is subject to drift forces caused by ocean currents, wind and waves. The proposed algorithm is motivated by a lineof-sight (LOS) guidance principle used by ancient navigators, which is here extended to path following of Dubins paths. The unknown sideslip angle is treated as a constant parameter, which is estimated using an adaptation law. The equilibrium points of the cross-track and parameter estimation errors are proven to be uniformly semiglobally exponentially stable (USGES). This guarantees that the estimated sideslip angle converges to its true value exponentially. The adaptive control law is in fact an integral LOS controller for path following since the parameter adaptation law provides integral action. The proposed guidance law is intended for maneuvering in the horizontal-plane at given speeds and typical applications are marine craft, autonomous underwater vehicles (AUVs), unmanned aerial vehicles (UAVs) as well as other vehicles and craft where the goal is to follow a predefined parametrized curve without time constraints. Two vehicle cases studies are included to verify the theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.