A key factor to energy-efficiency of heating in buildings is the behavior of households, in particular how they ventilate rooms. Energy demand can be reduced by behavioral change; devices can support this by giving feedback to consumers on their behavior. One such feedback device, called the 'CO 2 meter', shows indoor air-quality in the colors of a traffic light to motivate so called 'shock ventilation', which is energy-efficient ventilation behavior. The following effects of the 'CO 2 meter' are analyzed: (1) the effect of the device on ventilation behavior within households, (2) the diffusion of 'CO 2 meter' to other households, and (3) the diffusion of changed behavior to households that do not adopt a 'CO 2 meter'. An agent-based model of these processes for the city of Bottrop (Germany) was developed using a variety of data sources. The model shows that the 'CO 2 meter' would increase adoption of energy-efficient ventilation by c. 12% and reduce heating demand by c. 1% within 15 years. Technology diffusion was found to explain at least c. 54% of the estimated energy savings; behavior diffusion explains up to 46%. These findings indicate that the 'CO 2 meter' is an interesting low-cost solution to increase the energy-efficiency in residential heating.
Heating behavior of households is key for reducing domestic energy demand and mitigating climate change. Recently, various technical devices have been developed, providing households with feedback on their heating behavior and supporting energy conservation behavior. The impact of such devices on overall energy consumption depends on (1) the impact of a device within a household, (2) the diffusion of devices to other households and the number of adopters, and (3) the diffusion of the induced behavioral change beyond these households. While the first two processes are currently established in assessments of sustainable household devices, we suggest that adding behavior diffusion is essential when assessing devices that explicitly target behavioral change. We therefore propose an assessment framework that includes all three processes. We implement this framework in an agent-based model by combining two existing simulation models to explore the effect of adding behavior diffusion. In three simulation experiments, we identify two mechanisms by which behavior diffusion (1) spreads the effect of such devices from adopters to non-adopters and (2) increases the average speed of behavioral change of households. From these results we conclude that behavior diffusion should be included in assessments of behavior-changing feedback devices.
Feedback devices can be used to inform households about their energy-consumption behavior. This may persuade them to practice energy conservation. The use of feedback devices can also-via word of mouth-spread among households and thereby support the spread of the incentivized behavior, e.g. energy-efficient heating behavior. This study investigates how to manage the impact of these environmental innovations via marketing. Marketing activities can support the diffusion of devices. This study aims to identify the most effective strategies of marketing feedback devices. We did this by adapting an agent-based model to simulate the roll-out of a novel feedback technology and heating behavior within households in a virtual city. The most promising marketing strategies were simulated and their impacts were analyzed. We found it particularly effective to lend out feedback devices to consumers, followed by leveraging the social influence of well-connected individuals, and giving away the first few feedback devices for free. Making households aware of the possibility of purchasing feedback devices was found to be least effective. However, making households aware proved to be most cost-efficient. This study shows that actively managing the roll-out of feedback devices can increase their impacts on energy-conservation both effectively and cost-efficiently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.