In this work we characterize the local asymptotic self-similarity of harmonizable fractional Levy motions in the heavy tailed case. The corresponding tangent process is shown to be the harmonizable fractional stable motion. In addition, we provide sufficient conditions for existence of harmonizable fractional Levy motions.
In this work we characterize the local asymptotic self-similarity of harmonizable fractional Lévy motions in the heavy tailed case. The corresponding tangent process is shown to be the harmonizable fractional stable motion. In addition, we provide sufficient conditions for existence of harmonizable fractional Lévy motions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.