Risk stratification is critical for the early identification of high-risk individuals and disease prevention. Here we explored the potential of nuclear magnetic resonance (NMR) spectroscopy-derived metabolomic profiles to inform on multidisease risk beyond conventional clinical predictors for the onset of 24 common conditions, including metabolic, vascular, respiratory, musculoskeletal and neurological diseases and cancers. Specifically, we trained a neural network to learn disease-specific metabolomic states from 168 circulating metabolic markers measured in 117,981 participants with ~1.4 million person-years of follow-up from the UK Biobank and validated the model in four independent cohorts. We found metabolomic states to be associated with incident event rates in all the investigated conditions, except breast cancer. For 10-year outcome prediction for 15 endpoints, with and without established metabolic contribution, a combination of age and sex and the metabolomic state equaled or outperformed established predictors. Moreover, metabolomic state added predictive information over comprehensive clinical variables for eight common diseases, including type 2 diabetes, dementia and heart failure. Decision curve analyses showed that predictive improvements translated into clinical utility for a wide range of potential decision thresholds. Taken together, our study demonstrates both the potential and limitations of NMR-derived metabolomic profiles as a multidisease assay to inform on the risk of many common diseases simultaneously.
Background In primary cardiovascular disease prevention, early identification of high-risk individuals is crucial. Genetic information allows for the stratification of genetic predispositions and lifetime risk of cardiovascular disease. However, towards clinical application, the added value over clinical predictors later in life is crucial. Currently, this genotype-phenotype relationship and implications for overall cardiovascular risk are unclear. MethodsIn this study, we developed and validated a neural network-based risk model (NeuralCVD) integrating polygenic and clinical predictors in 395 713 cardiovascular disease-free participants from the UK Biobank cohort. The primary outcome was the first record of a major adverse cardiac event (MACE) within 10 years. We compared the NeuralCVD model with both established clinical scores (SCORE, ASCVD, and QRISK3 recalibrated to the UK Biobank cohort) and a linear Cox-Model, assessing risk discrimination, net reclassification, and calibration over 22 spatially distinct recruitment centres. Findings The NeuralCVD score was well calibrated and improved on the best clinical baseline, QRISK3 (∆Concordance index [C-index] 0•01, 95% CI 0•009-0•011; net reclassification improvement (NRI) 0•0488, 95% CI 0•0442-0•0534) and a Cox model (∆C-index 0•003, 95% CI 0•002-0•004; NRI 0•0469, 95% CI 0•0429-0•0511) in risk discrimination and net reclassification. After adding polygenic scores we found further improvements on population level (∆C-index 0•006, 95% CI 0•005-0•007; NRI 0•0116, 95% CI 0•0066-0•0159). Additionally, we identified an interaction of genetic information with the pre-existing clinical phenotype, not captured by conventional models. Additional high polygenic risk increased overall risk most in individuals with low to intermediate clinical risk, and age younger than 50 years. Interpretation Our results demonstrated that the NeuralCVD score can estimate cardiovascular risk trajectories for primary prevention. NeuralCVD learns the transition of predictive information from genotype to phenotype and identifies individuals with high genetic predisposition before developing a severe clinical phenotype. This finding could improve the reprioritisation of otherwise low-risk individuals with a high genetic cardiovascular predisposition for preventive interventions.
The large amount of biomedical data derived from wearable sensors, electronic health records, and molecular profiling (e.g., genomics data) is rapidly transforming our healthcare systems. The increasing scale and scope of biomedical data not only is generating enormous opportunities for improving health outcomes but also raises new challenges ranging from data acquisition and storage to data analysis and utilization. To meet these challenges, we developed the Personal Health Dashboard (PHD), which utilizes state-of-the-art security and scalability technologies to provide an end-to-end solution for big biomedical data analytics. The PHD platform is an open-source software framework that can be easily configured and deployed to any big data health project to store, organize, and process complex biomedical data sets, support real-time data analysis at both the individual level and the cohort level, and ensure participant privacy at every step. In addition to presenting the system, we illustrate the use of the PHD framework for large-scale applications in emerging multi-omics disease studies, such as collecting and visualization of diverse data types (wearable, clinical, omics) at a personal level, investigation of insulin resistance, and an infrastructure for the detection of presymptomatic COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.