Eukaryotic cells respond to unfolded proteins in their endoplasmic reticulum (ER stress), amino acid starvation, or oxidants by phosphorylating the alpha subunit of translation initiation factor 2 (eIF2alpha). This adaptation inhibits general protein synthesis while promoting translation and expression of the transcription factor ATF4. Atf4(-/-) cells are impaired in expressing genes involved in amino acid import, glutathione biosynthesis, and resistance to oxidative stress. Perk(-/-) cells, lacking an upstream ER stress-activated eIF2alpha kinase that activates Atf4, accumulate endogenous peroxides during ER stress, whereas interference with the ER oxidase ERO1 abrogates such accumulation. A signaling pathway initiated by eIF2alpha phosphorylation protects cells against metabolic consequences of ER oxidation by promoting the linked processes of amino acid sufficiency and resistance to oxidative stress.
The potassium channel ether à go-go has been directly linked to cellular proliferation and transformation, although its physiologic role(s) are as of yet unknown. The specific blockade of human Eag1 (hEag1) may not only allow the dissection of the role of the channel in distinct physiologic processes, but because of the implication of hEag1 in tumor biology, it may also offer an opportunity for the treatment of cancer. However, members of the potassium channel superfamily are structurally very similar to one another, and it has been notoriously difficult to obtain specific blockers for any given channel. Here, we describe and validate the first rational design of a monoclonal antibody that selectively inhibits a potassium current in intact cells. Specifically blocking hEag1 function using this antibody inhibits tumor cell growth both in vitro and in vivo. Our data provide a proof of concept that enables the generation of functional antagonistic monoclonal antibodies against ion channels with therapeutic potential. The particular antibody described here, as well as the technique developed to make additional functional antibodies to Eag1, makes it possible to evaluate the potential of the channel as a target for cancer therapy. [Cancer Res 2007;67(15):7343-9]
To examine the role of nuclear factor (NF)-κB in T cell development and activation in vivo, we produced transgenic mice that express a superinhibitory mutant form of inhibitor κB-α (IκB-αA32/36) under the control of the T cell–specific CD2 promoter and enhancer (mutant [m]IκB-α mice). Thymocyte development proceeded normally in the mIκB-α mice. However, the numbers of peripheral CD8+ T cells were significantly reduced in these animals. The mIκB-α thymocytes displayed a marked proliferative defect and significant reductions in interleukin (IL)-2, IL-3, and granulocyte/macrophage colony-stimulating factor production after cross-linking of the T cell antigen receptor. Perhaps more unexpectedly, double positive (CD4+CD8+; DP) thymocytes from the mIκB-α mice were resistant to α-CD3–mediated apoptosis in vivo. In contrast, they remained sensitive to apoptosis induced by γ-irradiation. Apoptosis of wild-type DP thymocytes after in vivo administration of α-CD3 mAb was preceded by a significant reduction in the level of expression of the antiapoptotic gene, bcl-xL. In contrast, the DP mIκB-α thymocytes maintained high level expression of bcl-xL after α-CD3 treatment. Taken together, these results demonstrated important roles for NF-κB in both inducible cytokine expression and T cell proliferation after TCR engagement. In addition, NF-κB is required for the α-CD3–mediated apoptosis of DP thymocytes through a pathway that involves the regulation of the antiapoptotic gene, bcl-xL.
CREB-2 (also called ATF4, TAXREB67, or C/ATF) is an evolutionarily conserved member of the CREB/ATF family of basic-leucine zipper transcription factors. CREB-2 is expressed ubiquitously in the adult mouse and can function as both a transcriptional activator and a repressor. However, little was understood about the normal function of CREB-2 in mammalian development or organ physiology. In this report we have used gene targeting to produce CREB-2-deficient (CREB-2-/-) mice. Adult CREB-2-/- mice displayed microphthalmia due to the complete absence of a lens. Early embryonic lens development including formation of the optic vesicle, primary lens fibers, and proliferating anterior epithelial cells occurred normally in these mice. However, beginning at ED 14.5 the CREB-2-deficient anterior epithelial lens cells underwent massive and synchronous apoptosis. This was followed by the complete resorption of the developing lens. Consistent with this defect in anterior epithelial cell survival, in situ hybridization studies showed that CREB-2 is expressed at high levels in wild-type anterior epithelial lens cells at ED 14.5. The defect in lens formation seen in the CREB-2-/- mice was not associated with qualitative defects in the expression of Pax-6, alphaA-crystallin, c-maf, or PDGF-R alpha. However, apoptosis of the anterior epithelial cells was mediated by a p53-dependent cell death pathway because ablation of the p53 gene rescued anterior epithelial cell death and allowed the formation of a lens in the absence of CREB-2. Taken together, these results identify CREB-2 as an important regulator of mammalian lens development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.